Logout succeed
Logout succeed. See you again!

Stability and Transport in Magnetic Confinement Systems PDF
Preview Stability and Transport in Magnetic Confinement Systems
Springer Series on ATOMIC, OPTICAL, AND PLASMA PHYSICS 71 Springer Series on ATOMIC, OPTICAL, AND PLASMA PHYSICS TheSpringerSeriesonAtomic,Optical,andPlasmaPhysicscoversinacomprehensivemanner theory and experiment in the entire field of atoms and molecules and their interactionwith electromagneticradiation.Booksintheseriesprovidearichsourceofnewideasandtechniques with wide applications in fields such as chemistry, materials science, astrophysics, surface science, plasma technology, advanced optics, aeronomy, and engineering. Laser physics is a particularconnectingthemethathasprovidedmuchofthecontinuingimpetusfornewdevel- opmentsinthefield.Thepurposeoftheseriesistocoverthegapbetweenstandardundergrad- uatetextbooksandtheresearchliteraturewithemphasisonthefundamentalideas,methods, techniques,andresultsinthefield. PleaseviewavailabletitlesinSpringerSeriesonAtomic,Optical,andPlasmaPhysicsonseries homepagehttp://www.springer.com/series/411 Jan Weiland Stability and Transport in Magnetic Confinement Systems With 51 Figures JanWeiland ChalmersUniversityofTechnology andEURATOMVRAssociation Gothenburg,Sweden ISSN1615-5653 ISBN978-1-4614-3742-0 ISBN978-1-4614-3743-7(eBook) DOI10.1007/978-1-4614-3743-7 SpringerNewYorkHeidelbergDordrechtLondon LibraryofCongressControlNumber:2012935694 #SpringerScience+BusinessMediaNewYork2012 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerpts inconnectionwithreviewsorscholarlyanalysisormaterialsuppliedspecificallyforthepurposeofbeing enteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthework.Duplication ofthispublicationorpartsthereofispermittedonlyundertheprovisionsoftheCopyrightLawofthe Publisher’s location, in its current version, and permission for use must always be obtained from Springer.PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter. ViolationsareliabletoprosecutionundertherespectiveCopyrightLaw. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface This book presents the collective drift and MHD type modes in inhomogeneous plasmas from the point of view of two fluid and kinetic theory. It is based on a lectureseriesgivenatChalmersUniversityofTechnology.Thetitleofthelecture notes is Low frequency modes associated with drift motions in inhomogeneous plasmas. The level is undergraduate to graduate. Basic knowledge of electrody- namicsandcontinuummechanics isnecessaryandanelementarycourseinPlasma Physics is a desirable background for the student. The author is grateful to A.Zagorodny,I.Holod,VZasenko,H.Nordman,A.Jarme´n,R.Singh,P.Anders- son,J.P.Mondt,H.Wilhelmsson,V.P.Pavlenko,H.SanukiandC.S.Liuformany enlighteningdiscussions,toG.Bateman,A.KritzandP.Strandforcollaborationon transport simulation, to my collaborators at JET, J.Christiansen, P. Mantica, V. Naulin,T.Tala,K.Crombe,E.AspandL.GarzottiinmodellingJETdischargesand toH.G.Gustavssonforhelpwithproofreading.ThanksarealsoduetotheAmeri- can Institute of Physics, the American Physical Society and Nuclear Fusion for allowing the use of several figures. Finally I extend my gratitude to my family, Wivan,HenrikandHelenafortheircontinousencouragementandsupport. Gothenburg,Sweden JanWeiland v Contents 1 Introduction.................................................................. 1 1.1 PrinciplesforConfinementofPlasma byaMagneticField.................................................... 1 1.2 EnergyBalanceinaFusionReactor................................... 4 1.3 MagnetohydrodynamicStability....................................... 7 1.4 Transport............................................................... 8 1.5 ScalingLawsforConfinementofPlasma inToroidalSystems.................................................... 9 1.6 TheStandpointofFusionResearchToday............................ 9 References................................................................... 10 2 DifferentWaysofDescribingPlasmaDynamics........................ 11 2.1 GeneralParticleDescription,Liouville andKlimontovichEquations.......................................... 11 2.2 KineticTheoryasGenerallyUsed byPlasmaPhysicists.................................................. 13 2.3 GyrokineticTheory.................................................... 14 2.4 FluidTheoryasObtainedbyTakingMoments oftheVlasovEquation................................................ 15 2.4.1 TheMaxwellEquations....................................... 16 2.4.2 TheLowFrequencyExpansion............................... 16 2.4.3 TheEnergyEquation ......................................... 18 2.5 GyrofluidTheoryasObtainedbyTakingMoments oftheGyrokineticEquation........................................... 20 2.6 OneFluidEquations.................................................. 21 2.7 FiniteLarmorRadiusEffectsinaFluidDescription................. 22 2.7.1 EffectsofTemperatureGradients ............................ 25 References................................................................... 26 vii viii Contents 3 FluidDescriptionforLowFrequencyPerturbations inanInhomogeneousPlasma.............................................. 27 3.1 Introduction.......................................................... 27 3.2 ElementaryPictureofDriftWaves.................................. 29 3.2.1 EffectsofFiniteIonInertia ................................. 32 3.2.2 DriftInstability.............................................. 34 3.2.3 ExcitationbyElectron-IonCollisions....................... 35 3.3 MHDTypeModes................................................... 36 3.3.1 Alfve´nWaves................................................ 37 3.3.2 InterchangeModes .......................................... 37 3.3.3 TheConvectiveCellMode.................................. 40 3.3.4 ElectromagneticInterchangeModes........................ 40 3.3.5 KinkModes.................................................. 43 3.3.6 StabilizationofElectrostaticInterchangeModes byParallelElectronMotion................................. 45 3.3.7 FLRStabilizationofInterchangeModes.................... 45 3.3.8 KineticAlfve’nWaves...................................... 47 3.4 QuasilinearDiffusion................................................ 49 3.5 ConfinementTime................................................... 52 3.6 Discussion............................................................ 53 References................................................................... 55 4 KineticDescriptionofLowFrequencyModes inInhomogeneousPlasma................................................. 57 4.1 IntegrationAlongUnperturbedOrbits............................... 57 4.2 UniversalInstability................................................. 63 4.3 InterchangeInstability............................................... 65 4.4 DriftAlfve’nWavesandbLimitation.............................. 67 4.5 LandauDamping..................................................... 70 4.6 TheMagneticDriftMode............................................ 71 4.7 TheDriftKineticEquation.......................................... 72 4.8 DielectricPropertiesofLowFrequencyVortexModes............ 73 4.9 FiniteLarmorRadiusEffectsObtained byOrbitAveraging.................................................. 76 4.10 Discussion............................................................ 80 4.11 Exercises............................................................. 80 References................................................................... 81 5 KineticDescriptionsofLowFrequencyModesObtained byGyroaveraging.......................................................... 83 5.1 TheDriftKineticEquation.......................................... 83 5.1.1 MomentEquations........................................... 87 5.1.2 TheMagneticDriftMode................................... 88 5.1.3 TheTearingMode........................................... 89 Contents ix 5.2 TheLinearGyrokineticEquation.................................... 90 5.2.1 Applications.................................................. 94 5.3 TheNonlinearGyrokineticEquation................................ 96 5.4 Gyro-FluidEquations................................................ 99 References................................................................. 100 6 LowFrequencyModesinInhomogeneousMagneticFields.......... 101 6.1 AnomalousTransportinSystemswithInhomogeneous MagneticFields.................................................... 101 6.2 ToroidalModeStructure........................................... 103 6.3 CurvatureRelations................................................ 107 6.4 TheInfluenceofMagneticShearonDriftWaves................. 110 6.5 InterchangePerturbationsAnalysed bytheEnergyPrincipleMethod................................... 113 6.6 Eigenvalue Equations for MHD TypeModes..................... 116 6.6.1 StabilizationofInterchangeModes byMagneticShear ....................................... 116 6.6.2 BallooningModes........................................ 119 6.7 TrappedParticleInstabilities...................................... 128 6.8 ReactiveDriftModes.............................................. 131 6.8.1 IonTemperatureGradientModes........................ 132 6.8.2 ElectronTemperatureGradientMode ................... 135 6.8.3 TrappedElectronModes................................. 136 6.9 CompetitionBetweenInhomogeneitiesinDensity andTemperature................................................... 139 6.10 AdvancedFluidModels........................................... 140 6.10.1 The Development of Research........................... 141 6.10.2 Closure.................................................... 144 6.10.3 Gyro-LandauFluidModels............................... 146 6.10.4 NonlinearKineticFluidEquations....................... 147 6.10.5 ComparisonswithNonlinearGyrokinetics............... 148 6.11 ReactiveFluidModelforStrongCurvature....................... 150 6.11.1 TheToroidalZ Mode.................................... 151 i 6.11.2 ElectronTrapping......................................... 154 6.11.3 Transport.................................................. 156 6.11.4 NormalizationofTransportCoefficients................. 158 6.11.5 FiniteLarmorRadiusStabilization....................... 159 6.11.6 TheEigenvalueProblemforToroidal DriftWaves............................................... 160 6.11.7 EarlyTestsoftheReactiveFluidModel................. 163 6.12 ElectromagneticModesinAdvancedFluidDescription.......... 164 6.12.1 EquationsforFreeElectrons IncludingKinkTerm..................................... 165 6.12.2 KineticBallooningModes................................ 167 x Contents 6.13 ResistiveEdgeModes............................................. 168 6.13.1 ResistiveBallooningModes.............................. 170 6.13.2 TransportintheEnhancedConfinementState........... 173 6.14 Discussion.......................................................... 175 References................................................................. 176 7 Transport,OverviewandRecentDevelopments....................... 181 7.1 StabilityandTransport............................................. 181 7.2 MomentumTransport............................................. 181 7.2.1 SimulationofanInternalBarrier......................... 183 7.2.2 SimulationofanEdgeBarrier............................. 184 7.3 Discussion.......................................................... 187 References................................................................. 187 8 InstabilitiesAssociatedwithFastParticles inToroidalConfinementSystems....................................... 191 8.1 GeneralConsiderations............................................ 191 8.2 TheDevelopmentofResearch..................................... 192 8.3 DilutionDuetoFastParticles..................................... 193 8.4 FishboneTypeModes............................................. 194 8.5 ToroidalAlfve´nEigenmodes...................................... 195 8.6 Discussion.......................................................... 197 References................................................................. 198 9 NonlinearTheory......................................................... 199 9.1 TheIonVortexEquation.......................................... 199 9.2 TheNonlinearDielectric.......................................... 207 9.3 Diffusion........................................................... 208 9.4 Fokker-PlanckTransitionProbability............................. 212 9.5 Discussion.......................................................... 215 References................................................................. 215 GeneralReferences........................................................... 219 AnswerstoExercises ........................................................ 221 Index........................................................................... 225