Logout succeed
Logout succeed. See you again!

Statistical Physics of the Symmetric Group PDF
Preview Statistical Physics of the Symmetric Group
StatisticalPhysics of the SymmetricGroup Mobolaji Williams Department of Physics, Harvard University, Cambridge, MA 02138, USA ∗ Eugene Shakhnovich DepartmentofChemistryandChemicalBiology,HarvardUniversity,Cambridge,MA02138, USA† (Dated: March7,2017) 7 1 Orderedchains(suchaschainsofaminoacids)areubiquitousinbiologicalcells,andthesechains 0 performspecificfunctionscontingentonthesequenceoftheircomponents. Usingtheexistenceand 2 generalpropertiesofsuchsequencesasatheoreticalmotivation,westudythestatisticalphysicsofsys- temswhosestatespaceisdefinedbythepossiblepermutationsofanorderedlist,i.e.,thesymmetric r a group,andwhoseenergyisafunctionofhowcertainpermutationsdeviatefromsomechosencorrect M ordering.Suchanon-factorizablestatespaceisquitedifferentfromthestatespacestypicallyconsid- eredinstatisticalphysicssystemsand consequentlyhas novelbehavior insystemswithinteracting 5 andevennon-interactingHamiltonians. Variousparameterchoicesofamean-fieldmodelrevealthe systemtocontainfivedifferentphysicalregimesdefinedbytwotransitiontemperatures,atriplepoint, ] andaquadruplepoint.Finally,weconcludebydiscussinghowthegeneralanalysiscanbeextendedto h statespaceswithmorecomplexcombinatorialpropertiesandtootherstandardquestionsofstatistical c mechanicsmodels. e m - I. INTRODUCTION t a t s Chains of amino acids are important components of . t biological cells, and for such chains the specific order- a ingoftheaminoacidsisoftensofundamentaltothere- m sulting functionandstabilityof the foldedchainthatif - majordeviationsfromthecorrectorderingweretooccur, d n thefinalchaincouldfailtoperformitsrequisitefunction o withinthecell,provingfataltotheorganism. FIG.1: Foldingvs. Design(orInverseFolding) c More specifically, we see the relevance of correct or- problems: Theproteinfoldingproblemisconcerned [ dering in the study of protein structure, which is of- withdeterminingthethreedimensionalstructure 2 tendividedintothe proteinfoldingandproteindesign producedbyaparticularsequenceofaminoacids. The v problem. While the protein folding problem concerns proteindesignproblem(whichmotivatesthecurrent 4 findingthethree-dimensionalstructureassociatedwith work)isconcernedwithfindingthesequence(s)of 7 agivenaminoacidsequence,theproteindesignproblem aminoacidswhichyieldagiventhreedimensional 3 (alsotermed the inverse-foldingproblem; see Figure 1) polypeptidestructure. Anumberofapproachestothe 7 concerns finding the correctamino acidsequence asso- designproblemaregivenin[1] 0 ciatedwithagivenproteinstructure. . 1 Anaspectofonesolutiontotheproteindesignprob- 0 7 lem is to maximize the energy difference between the For example, for a polypeptide chain with N residues, 1 low-energy folded native structure and the higher en- ratherthansearchingovertheentiresequencespace(of : ergymisfolded/denaturedstructures. Indoing so, one size20N),onesearchesoveraspaceofsequences(ofsize v takes native structure asfixed and then determines the N!/n !n !...n !)whicharedefinedbyafixednumber i 1 2 20 X sequence yielding the minimum energy, under the as- ofeachaminoacid. sumption (termed the ”fixed amino-acid composition” r This aspect of the protein design problem alerts one a assumption) thatonlycertainquantitiesof amino-acids to agap in the statisticalmechanics literature. Namely, appear in the chain [2]. In this resolution (specifically theredonotseemtobeanysimpleandanalyticallysolu- termedheteropolymermodels[3][4])thecorrectamino blestatisticalmechanicsmodelswherethespaceofstates acid sequence is found by implementing an MC algo- isdefinedbypermutationsofalistofcomponents. rithminsequencespacegivenacertainfixedaminoacid We can take steps toward constructing such a model composition. This entailsassuming the number of var- by considering reasonable general properties it should ioustypesofaminoacidsdoesnotchange,anddistinct have. Ifweassumetherewasaspecificsequenceofcom- statesinsequencespacearepermutationsofoneanother. ponentswhichdefinedthelowestenergysequenceand wasthermodynamicallystableinthemodel,thendevi- ationsfromthissequencewouldbelessstable. Because ∗[email protected] oftherolesequencesofmoleculesplayinbiologicalsys- †[email protected] tems, it is worth asking what features we expect such 2 sequences to have from the perspective of modeling in pressedincomponentformas statisticalmechanics. InSectionIIweintroducethemodel,andcomputean ω~ =(ω1,...,ωN). (2) exact partition function which displays what we term Wewilltakethecollectionofcomponents ω asintrin- “quasi”-phasetransitions—atransitioninwhichthese- { k} sictooursystem,andthustakethestatespaceofoursys- quence of lowest energy becomes entropically disfa- temtobethesetofallthevectorswhoseorderingofcom- vored above a certain temperature. In Section III, we ponentscanbeobtainedbypermutingthecomponents extendthepreviousmodelbyaddingaquadraticmean of ~ω, i.e., all permutations of ω ,...,ω . We represent field interaction term and show that the resulting sys- 1 N temdisplaystwotransitiontemperatures,atriplepoint, anarbitrarystateinthisstatespaceas~θ = (θ1,...,θN), andaquadruplepoint. InSectionIV,wediscussvarious wheretheθk aredrawnwithoutrepeatfrom ωk . For- { } ways we can extend this model in theoretical or more mally,wewouldsayourspaceofstatesisisomorphicto phenomenologicaldirections. thesymmetricgroupon~ω([5]). Wewillthusdenoteour statespaceas Sym(ω) := SetofAllPermutationsof(ω ,...,ω ). 1 N II. SYSTEMANDPARTITIONFUNCTION (3) andthen anarbitrarystate~θ isjustanelementelement Ourlargergoalistostudyequilibriumthermodynam- ofthisset. ics for a system defined by permutations of a set of N Asafirstformulationofthemodel,wewilltake~θ0 =ω~ componentswhereeachunique permutationisdefined (thecorrectsequence)torepresentthezeroenergystate byaspecificenergy. Ingeneral,weshouldconsiderthe inthesystem,andforeachcomponentθiofanarbitrary casewherethesetofN componentsconsistsofLtypes vector ~θ which differs from the corresponding compo- ofcomponentsforwhichifnkisthenumberofrepeated nentωiin~ω,thereisanenergycostofλi >0. TheHamil- componentsoftypek,then L n = N. Forsimplic- tonianisthen k=1 k ity, however, we will take n = 1 for all k so that each kP N componentisofauniquetypeandL=N. ( θ )= λ I , (4) To study the equilibrium thermodynamics of such a HN { i} i θi6=ωi i=1 systemwithafixedN atafixedtemperatureT,weneed X to compute its partition function. For example, for a where θ and ω are components of vectors ~θ and ω~ re- i i sequence with N components (withno components re- spectively,andI isdefinedby peated),thereareN!microstatesthesystemcanoccupy andassumingwelabeleachstatek = 1,...,N! 1,N!, 1 ifAistrue andassociateanenergyǫkwitheachstate,thent−hepar- IA ≡ 0 ifAisfalse. (5) titionfunctionwouldbe (cid:26) N! Wenotethatalthoughwelabelourgeneralstateasθ~ = Z = e−βǫk, (1) (θ ,...,θ ),thecomponentsθ ,...,θ canonlytakeon 1 N 1 N kX=1 mutually-exclusivevaluesfromtheset{ωk}. Wewanttoexploretheequilibriumthermodynamics whereǫ foreachstatekcouldbereasonedfromamore k ofasystemwithaHamiltonianofEq.(4). Thisamounts precisemicroscopictheoryofhowthecomponentsinter- tocalculatingthepartitionfunction actwithoneanother. Phenomenologically,Eq.(1)would be the most precise way to construct a model to study N theequilibriumpropertiesofpermutations,butbecause Z ( βλ )= exp β λ I , (6) itbearsnoclearmathematicalstructure,itisunenlight- N { i} ~θ∈SXym(ω) − Xi=1 i θi6=ωi! eningfromatheoreticalperspective. Instead we will postulate a less precise, but theoreti- whereSym(ω)isagainthesetofallpermutationsofthe cally more interesting model. For most ordered chains components of (ω ,...,ω ). To find a closed form ex- 1 N in biological cells, there is a single sequence of com- pression for the partition function, we group terms in ponents which is the “correct” sequence for a partic- Eq.(6) according to the number of ways to completely ular macrostructure. Deviations from this correct se- reorderjcomponentsin~ωwhilekeepingtheremaining quenceareoftendisfavoredbecausetheyformlessstable componentsfixed. Eachsuchreordering(i.e.,eachvalue macrostructuresortheyfailtoperformtheoriginalfunc- of j) is associated with a sum over products of e−βλi tionofthe“correct”sequence. Withthegeneralproper- termswithjfactorsofe−βλi (forvariousi)ineachterm. tiesofsuchsequencesinmind,wewillabstractlyrepre- Thetotalpartitionfunctionisasumofallsuchreorder- sentoursystemasconsistingofN siteswhicharefilled ingsforalljsfrom0toN. Ascanbeseenfromadirect with particular coordinate values denoted by ω . That k is,wehaveanarbitrarybutfixedcoordinatevector~ωex- 3 expansionofEq.(6),wehave definedas N N g (j)= d (13) Z ( βλ )= d Π e−βλ1,...,e−βλN , (7) N j j N { i} j j (cid:18) (cid:19) j=0 X (cid:0) (cid:1) isthenumberofwaystoreorderalistofN elementsso whered ,termedthenumberofderangementsofalistof that j elements are no longer in their original position. j j([6]),isthenumberofwaystocompletelyreorderalist Thiscombinatorialdefinitionofg (j)willproveuseful N of j elements. The quantity Π (x ,...,x ), termedthe when we explore the phase behavior of more complex j 1 N jth elementary symmetric polynomial on n ([7]), is the modelsofpermutations. sumofallwaystomultiplyjelementsoutoftheN term FromtheformofEq.(10),itisclearthat,physically,its set x1,...,xN . For example, Π2(x1,x2,x3) = x1x2 + associated Hamiltonian is not realistic as it places dis- { } x2x3+x3x1. Bydefinition tinct permutations (which in any true physical system mostlikelyhavequitedifferentenergyproperties)inthe 1 dk N same degenerate energy state. Still, from a theoretical Π (x ,...,x )= (1+qx ) . (8) k 1 N k! dqk i perspective,thesimplicityofthismodelmakesitasuit- " # Yi=1 q=0 ablestartingpointforstudyingthegeneralpropertiesof systemsofpermutations. By the definition of the incomplete gamma function as Γ(x,α)= ∞dttx−1e−tanditsrelationtoderangements α (i.e.,d =Γ(j+1, 1)/e,see[8]),wethenfind j R − A. Phase-likeBehaviorof“Non-Interacting”System ∞ N Z ( βλ )=e−1 dte−t tjΠ e−βλ1,...,e−βλN N i j { } Wecaninvestigatethephase-likebehaviorofthesys- Z−1 j=0 X (cid:0) (cid:1) tem defined by the Hamiltonian Eq.(4) (for constant λi ∞ N across i), byapplying steepestdescentto Eq.(11) in the = dse−s 1+(s 1)e−βλℓ , (9) − N 1limit. Doingso,wefindwecanapproximatethe Z0 ℓY=1h i fre≫eenergyofthesystemtobe whichisthedesiredclosed-formexpressionforthepar- βF = lnZ (βλ ) titionfunctionofthissystem. − N 0 WithEq.(9),theproblemofabstractlystudyingather- Nβλ eβλ0 N 1 +F (N), (14) 0 0 ≃ − − − malsystemofpermutationswithHamiltonianEq.(4)is, from the perspective of equilibrium statistical mechan- whereF0(N)isaβλ0in(cid:0)dependentcon(cid:1)stant. Notingthat ics,nowcomplete. However,therearestillsomephysi- j = ∂lnZN(βλ0)/∂(βλ0) = ∂F/∂λ0,wefindtheav- h i − calandtheoreticalresultswhichcanbeteasedfromthis erage number of incorrect components satisfies the fol- formalism. Specifically,wecanaskwhetherthissystem lowingequationofstate: exhibits phase transitions. To answer this question, it wouldprovemoreanalyticallytractabletotakeλ = λ j N eβλ0. (15) i 0 h i≃ − foralli. Withthiscondition,ourpartitionfunctionsim- ByEq.(12),wecaninferthat j mustbegreaterthanor plifiesto h i equal to 0. However, the right-hand-side of Eq.(15) ex- N hibitsnosuchexplicitconstraint. Thuswecaninferthere Z (βλ )= g (j)e−jβλ0 (10) is a phase-like transition in our system at the tempera- N 0 N ture j=0 X ∞ = dse−s 1+(s 1)e−βλ0 N (11) k T = λ0 . (16) Z0 − B c lnN (cid:0) (cid:1) wherewetransformedourHamiltonianas N( θi ) Belowthistemperature,wemusthave j 0andthus H { } → h i ≃ (j)=λ0jwithj,definedas the“correctpermutation”hasthelowestfreeenergyand H is thermodynamically favored; above this temperature, N j > 0 and the system is in a disordered phase where j I , (12) h i ≡ θi6=ωi thepreviouslowestenergy“correct-permutation”isen- Xi=1 ergeticallydisfavored. Interestingly, this transition arises from the naively the number of components of ~θ which are not equal to non-interactingHamiltonian the correspondingcomponent in~ω. Wecallj the num- ber of incorrect components of ~θ, and if j = N we say N ~θ is completely disordered. The factor gN(j) in Eq.(10) is HN({θi})=λ0 Iθi6=ωi. (17) i=1 X 4 1. NotaTruePhaseTransition Weclaimthesystemdoesnotexhibittruephasetran- sition behavior because many of these results are not consistent with the traditional thermodynamic defini- tionofphasetransitions. For one, phasetransitionsare associatedwithdivergencesinthederivativesofthefree energy, but there is no divergence in the free energy associated with the partition function Eq.(11) for pos- sible parameter values. Also, the result Eq.(15) arises from the steepest descent approximation which makes j ’stemperaturedependencenear j = 0appearnon- h i h i FIG.2: Freeenergyfor“Non-InteractingModel”: For differentiablewhenbyEq.(11)itisactuallydifferentiable λ0 >0,theLandaufreeenergyofthesystemasa overitsentire domain. Finally, withEq.(10) wecande- functionofj,thenumberofincorrectcomponentsin~θ, fineaLandaufreeenergyF(j)forthissystemaccording isalwaysconvexwithasingleglobalminimum. toZ = e−βF(j),andwhatwemayordinarilylabelas j Becausej 0,thej <0domainofeachplot(dashed a phase transition (i.e., going from j = 0 to j = 0) ≥ P h i h i 6 section)isinaccessible. Forsufficientlylow arises, not from changes in the functional form of the temperatures,theminimumisatj =0,butaswe Landaufree energy as we see in real phase transitions, increasethetemperaturebeyondEq.(16),thefree butfromchangesintheexcludedregionoftheLandau energycurvemovestotheright(butretainsits freeenergy(SeeFigure 2). Becausethe functionalform functionalform)andthenewminimumisataj >0 ofthefreeenergyremainsthesameweobservenotrue value. ActualplotsofEq.(20)forj <0requireusto phasetransition. replacethecombinatorialargumentofthelogarithm Alternatively, a heuristic argument for the non- withitscorrespondinggammafunctionexpression. existenceofphasetransitionsinourpermutationmodel ismathematicallyverysimilar totheLandauargument ([9])forthenon-existenceoftransitionsin1dIsingMod- els. For our permutation system with N lattice sites, thestateofzeroenergyandzeroentropyconsistsofev- erysitebeingoccupiedbyitscorrectcomponent. Toin- creasetheenergyofthissystem,wecanchoosejsitesto containincorrectcomponents,thusgivingusanenergy We say “naively non-interacting” because Eq.(17) con- = λ j. The number of wayswe can choose these j j 0 H sists of a sum over linear functions of a single index i, componentsisgivenbyEq.(13)Thus,uponintroducing andthus doesnot suggestanycoupling betweenterms j = 0 incorrect components, the change in the Landau 6 ofdifferingindex. However,statisticalmechanicstellsus freeenergyofoursystemis thattheenergyofasystemisn’ttheonlythingwhichde- termines the thermodynamic behavior of a system. In- N ∆F(j)=λ j k T ln d j(λ k T lnN), deedwehavetoconsiderentropiccontributionsaswell, 0 − B j j ≃ 0− B (cid:20)(cid:18) (cid:19) (cid:21) and in this system the entropy (as it is a function of j) (20) candrivethermodynamic behavior. Inotherwords, al- though the Hamiltonian is depicted as non-interacting where we took these results in the 1 j N limit ≪ ≪ andcanset-theoreticallyberepresentedas and used d j!/e. In the thermodynamic (N ) j ≃ → ∞ limit, we find that ∆F(j) meaning there is no system = 1 2 N, (18) non-zeroT atwhichtheen→trop−i∞ccontributionbecomes H H ⊕H ⊕···⊕H subdominanttotheenergy. Thusthesystemexhibitsno our systemreallyexhibits interactions betweencompo- phasetransition. nents because our total space of states cannot be fac- S torized: = ... . (19) system 1 2 N S 6 S ⊗S ⊗ ⊗S III. PARTITIONFUNCTIONFORINTERACTING Thus the “non-interacting” system exhibits a transition MODEL atEq.(16)duetothecouplednatureofthestatespace. As discussedinthesubsequentsection,wetermthistransi- tiona“quasi-phasetransition”becauseitdoesnotbear Whenwefirstconsideredamodelofthermalpermu- allofthestandardpropertiesweexpectinphasetransi- tations,webeganwithaHamiltonianwheresitesdidnot tions. interactwithoneanotherandeachhadasite-dependent 5 energycostforbeingincorrectlyoccupied: A. CalculatingOrderParameter ( θ )= λ I . (21) H { i} i θi6=ωi i X More generally, we can consider Hamiltonians with an arbitrary number of multiple-site interaction terms. Our goal is to analyze the “quasi”-phase behavior of SuchaHamiltoniancouldbewrittenas this system in a way analogous to our analysis for the non-interactingsystem. TodosowebeginwiththeLan- 1 ( θ )= λ I + µ I I + . daufreeenergyfunction H { i} i θi6=ωi 2 ij θi6=ωi θi6=ωi ··· i i,j X X λ 1 (22) F (j,β)=λ j+ 2 j2 lng (j). (26) N 1 N The first term in Eq.(22) associates an energy cost of λ 2N − β i with incorrectly occupying the component at position Alternative starting points for this derivation are pre- i. The second term models interactions between sites sentedinAppendixA.Oursystemisconstitutivelydis- where the correct (or incorrect) occupation of a single crete,soitisnotpreciselycorrecttodiscussourfreeen- site determines the energy of another. The exact val- ergy in the language of analysis, but given our expres- ues of λ and µ could be chosen to ensure the “cor- i ij sionforEq.(13)wecanmapthissystemtoacontinuous rect”state(θ = ω foralli)isnon-degenerateasinthe i i one which bears the same thermodynamic properties non-interactingmodel. Theellipsesrepresenthigheror- andforwhichanalysisisappropriate. Specifically,ifwe derinteractionsinthisframework.Hamiltonianssuchas takejtobecontinuousandusetheidentityΓ(x+1)=x!, Eq.(22)shouldbemorephysicallyrelevantastheywould wecanwrite correspond to systems where the energy cost for devi- atingfromthelowestenergypermutationisnotsimply Γ(N +1) Γ(j+1, 1) linearbutcouldberepresentedasatensorvaluedfitting gN(j)= − , (27) Γ(j+1)Γ(N j+1) e function. − WiththeapproximationΓ(j+1, 1) Γ(j+1)andthe − ≃ substitutionEq.(27),Eq.(26)thenbecomes λ 1 Wecanmakeprogressinstudyingthethermodynam- f (j,β)=λ j+ 2 j2+ lnΓ(N j+1)+f (28) N 1 0 icsofmoregeneralHamiltonianslikeEq.(22)byfirstonly 2N β − considering first- and second-order interaction terms where we defined our approximated free energy as andtakingthe interactionstobeconstants: λ = λ for i 1 f (j,β) and collectedthe j independentconstants into alli;µ = λ /N foralli,j. Thefactorof1/N ischosen N ij 2 f . Now Eq.(28) is fully continuous and amenable to sothatthesecondtermmatchestheextensivescalingof 0 analysis. To find the thermodynamic equilibrium of thefirstterm. Thepartitionfunctionforsuchparameter this system, we need to find the value of j for which selectionsisthen ∂f (j,β)/∂j = 0 and ∂2f (j,β)/∂j2 > 0. For the first N N N conditionwehave Z (β;λ ,λ )= exp βλ I N 1 2 − 1 θi6=ωi− ∂ λ2 1 ~θ∈SXym(ω) Xi=1 ∂jfN(j,β)=λ1+ Nj− βψ0(N −j+1)=0. (29) N βλ 2 I I , (23) Forx 0.6wehave 2N θi6=ωi θj6=ωj ≥ i,j=1 X ψ (x) ln(x 1/2), (30) 0 ≃ − whereλ andλ areinteractionparameterswithunitsof 1 2 ascanbeaffirmed byTaylor expansionor plotsof each energy. Wecanalsowrite this partition functionin the side. Since the argument of ψ (N j +1) is bounded Eq.(12)basisas 0 − belowby1,theapproximationinEq.(30)canbeapplied N toEq.(29). Withthissubstitution, andsettingtheresult Z (β;λ ,λ )= g (j)e−βE(j), (24) tobevalidfortheequilibriumvaluej =j,wethenfind N 1 2 N theconstraint j=0 X whereg (j)isdefinedinEq.(13)and eβλ2j/N = e−βλ1 j N 1/2 , (31) N − − − λ whichhasthesolution (cid:0) (cid:1) (j)=λ j+ 2 j2 (25) 1 E 2N j 1 βλ 1 =1 W 2eβλ1+βλ2 + , (32) istheenergyfunctionforthesystem. N − βλ N O N 2 (cid:18) (cid:19) (cid:18) (cid:19) 6 where W is the (branch unspecified) Lambert W func- tion,definedby W(xex)=x. (33) Tospecifythe branchof the W which corresponds to a stableequilibriumwecomputethesecondderivativeof our free energy at this derived critical point. Doing so yields ∂2 1 1 1 f (j =j,β) λ + ∂j2 N ≃ N 2 β1 j/N (cid:18) − (cid:19) λ 1 2 = 1+ . (34) N W βλ2eβλ1+βλ2 N (cid:16) (cid:17) ThusEq.(32)(forλ > 0)yieldsafreeenergyminimum 2 for FIG.3: (Coloronline)Possiblefunctionalformsof Eq.(28): Wenotethatthestabilitiesthatdefinethej =0 βλ W 2eβλ1+βλ2 > 1, (35) andj =N pointsarenotthermodynamicstabilities (cid:18) N (cid:19) − (namelytheydon’tarisefromthef′(j)=0condition). Rathersincethespectrumofj valuesisboundedbelow and yields a maximum for the inverse condition. This by0andabovebyN,owingtotheseboundary amountstostatingthatthestableequilibriumforjisde- conditionsthesystemcanbecometrappedinordinarily finedbytheprincipalbranchoftheLambertWfunction unstablepartsofthefreeenergycurve. Thecolors whereW =W 1,andtheunstableequilibriumforj 0 ≥− matchthecoloroftheassociatedregionofparameter isdefinedbythenegativebranchwhereW =W < 1. −1 − spaceinFigure4. Thus,theorderparameterforthissystemis j 1 βλ 1 0 =1 W 2eβλ1+βλ2 + . (36) tionsinthissystem,thereareinfactfivedistinctregimes 0 N − βλ2 (cid:18) N (cid:19) O(cid:18)N(cid:19) ofparameterspace. Wecanobtainaqualitativesenseof theseregimesbycreatingschematicplotsofthefreeen- Wenotethattakingλ 0andusingW(x)=x+ (x2) 2 → O ergyEq.(28)for variousparametervaluesof λ1 and λ2. for x 1 returns us to the non-interacting result | | ≪ Thepossibleplotscanbeplacedintofivecategoriesac- Eq.(15). cording to the plot’s stable or metastable j values. We For completeness, we define the value of j which depictthesepossibleplotsinFigure3. Wenotethatonly yields a free energy maximum as j ; it is related to −1 thefreeenergyplotswithvalidvaluesofj containwhat 0 Eq.(36) by replacing the principal branch function W 0 wenormallyconsiderathermodynamicequilibrium;the withW . −1 otherplotshave“stable”valuesofjarisingonlyfromthe j =0and/orj =N boundaryconditions. Qualitatively,wecannamethestatesaccordingtothe B. DiscussionofParameterSpace sequence space to which their equilibrium values of j correspond. We know for j = 0, our system is in a In the previous section, we found that the order pa- statewithzeroincorrectcomponentsinθ~andhencethe rameterforthissystemwasgivenbyEq.(36). Wenoted system is “perfectly ordered” or just ”ordered”. Con- that this solution represented a local minimum of the versely for j = N our system has N incorrect compo- freeenergyaslongastheLambertWfunctionsatisfied nentsandhence the systemis“completelydisordered” W = W0 > 1. Thus when this condition is violated, orjust“disordered”.Thein-betweencaseofj =jwhere − j is no longer a valid stable equilibrium, and our sys- 0 < j < N can be given the relatedlabel of “partially- 0 temhasundergonea“quasi”-phasetransitionorsimply ordered”. Thus, the regime names associated with our atransition. possiblevaluesoftheorderparametersare Moreover,our valuesofj areboundedbelowbyj = OrderedRegime(j = 0stable):Neitherj orj 0 and bounded above by j = N, neither conditions of • 0 −1 exist;f(N,β)>0. which are naturallyconstrained byEq.(36). Thus these twoconditionsareassociatedwithtwoothertransitions. DisorderedRegime(j = N stable):Neitherj or Inall,then, therearethreeconditions whichdefinethe • j exist;f(N,β)<0. 0 −1 quasi-phaseboundariesinthissystem. While therearethreeconditions which definetransi- Partially-Ordered Regime (j = j0 stable): Only • 7 TABLEI:Functionsdefiningboundariesbetween ischaracterizedbythecondition parameterregimes. λ =lnN/β and λ = 1/β. (37) 1 2 − RegimeTransition BoundaryinParameterSpace Theseconditionscharacterizethesystem’striplepoint. 1 Order/Partial-Order λ1 = lnN Similarly, for N 1, the Partially-Ordered, Dis- β ≫ ordered, Order-Partially-Ordered Metastability, and 1 N Order-Disorder Metastability coexistence point is char- Order/Order-Partial- λ = W e−βλ1 2 β −1 − e acterizedbythecondition OrderMetastability (cid:18) (cid:19) λ Order/Disorder λ2 =−1 11/N λ1 =lnN/β ≃−λ2. (38) − Thisconditioncharacterizesthe quadruplepointof the system. j exists. Figure4alsodepictsthe possible regimesof oursys- 0 tem for a given temperature and various Hamiltonian Order and Disorder Metastable Regime (j = 0 parametersλ1andλ2. Morephysically,wemaybeinter- • andj = N stable): Onlyj exists. estedinknowingwhatarethe“quasi”phaseproperties −1 ofasystemwithafixedλ andλ andavariabletemper- 1 2 Order and Partial-Order Metastable Regime ature. That is, what are the temperatureswhich define • (j = 0andj = j0stable): Bothj0andj−1exist. thevarioustransitionsbetweenregimesinthesystem? AnarbitrarypermutationsystemforafixedN andat Wenote thatitseemstobe afundamentalfeature(or a avariabletemperatureischaracterizedbyaspecificen- lack of one) of this system, that the free energy Eq.(28) ergyfunctionEq.(25). Suchasystemisthereforedefined doesnotadmitametastabilitybetweenpartial-orderand byaspecificλ andλ ,andthesystemcanbeassociated 1 2 disorder. withaparticularpoint(andhenceregion)intheparame- terspaceofFigure4. Aswevarythetemperatureofthis system, the temperature dependent regime-coexistence C. Monte-CarloGeneratedParameterSpace lines change and if theychange in such awayasto ex- tendtheregionofaregimetonewlyencompassourorig- inalpointthenoursystemhasundergoneatransition. In With these regime definitions, we can depict the pa- thisway,wecandefinethetemperatureswhichcharac- rameter space graphically. In Figure 3 we showed the terizevariouspossibletransitionsofthissystem. possible formsofthe freeenergyforthissystemwhere First,fromFigure4andEq.(C10)wenotetheregime- eachwascategorizedaccordingtotheexistenceofthelo- coexistence line between the partially-ordered and dis- calminimum criticalpointj , the existenceof the local 0 ordered regime is independent of temperature, and so maximumcriticalpointj ,andthesignofthequantity −1 there is no criticaltemperature defining a partial-order f (j,β). Wecanextrapolatethiscategorizationtoλ λ N 1 2 − todisordertransition. parameter space, by determining which regions of pa- FromEq.(C3),wecaninferthatthepartial-ordertoor- rameterspacecorrespondtospecificplotsinEq.(28). Do- dertransitionischaracterizedbymovingbelowthetem- ingsothroughtheMonteCarloproceduredescribedin perature Appendix B, we generated 10,000points of the param- eter space diagram in Figure 4 for β set to 1. We note λ thattheparameterspaceexhibitsfiveregimesseparated k T = 1 . (39) B c1 lnN bythreelinescitedinTableIeachofwhichcorrespond to the three conditions mentioned at the beginning of Contingentonwhichregionofparameterspacethesys- this section. These lines can be derived analytically(as tem lies, this temperature also characterizes the disor- showninAppendixC)byconsideringtheconditionsin der to order-disorder metastability transition and the turnandwhichregimestheyservetoconnect. partial-ordertoorder-partial-ordermetastabilitytransi- tion. AndfromEq.(C6),wecansolvefortheassociatedtran- D. TripleandQuadruplePointsandTransition sitiontemperaturegivenfixedλ andλ tofind 1 2 Temperatures N −1 k T =(λ +λ ) W (λ +λ ) (40) From Figure 4 we see that our system is character- B c2 1 2 0 −eλ 1 2 (cid:20) (cid:18) 2 (cid:19)(cid:21) ized by two points where there is a coexistence be- tween multiple regimes. Given that W ( e−1) = wherethisexpressionisonlyrelevantfor λ < λ < 0 −1 1 2 − − 1, we have that the Ordered, Partially-Ordered, and and λ > k T lnN. Moving above this temperature 1 B − Order-Partially-OrderedMetastabilitycoexistencepoint leads to the order to order-partial-order metastability 8 FIG.4: (Coloronline)λ λ ParameterSpaceforInteractingMeanFieldSystem: Wesetβ =1andN =100. We 1 2 − followedtheMonteCarloprocedureoutlinedinthenotesfor10,000points. Inthefigurewealsodenotedthe analyticlines(i.e.,Eq.(C3),Eq.(C7),andEq.(C10))whichdefinetheseparationbetweenthephases. Thecolors correspondtothecolorsofthefreeenergycurveinFigure3. transition. of typical canonical models in statistical mechanics. In particularwehopetoextendittonon-trivialsitedepen- dentinteractions. Forexample,anearestneighborinter- action Hamiltonian of the kind which characterize the IV. DISCUSSION IsingModel, In this work, motivated by an abstraction of a foun- N dationalprobleminproteindesign,wepositedandana- ( θ )= q I I , (41) lyzedthebasicpropertiesofastatisticalphysicsmodelof H { i} − θi6=ωi θi+16=ωi+1 i=1 X permutations. Formally,weconsideredasimplestatisti- calphysicsmodelwherethespaceofstatesforN lattice would be an alternative physical extreme to the mean- siteswasisomorphic tothe symmetric group ofdegree fieldinteractionsconsideredinSectionIII. N [5], and where the energy of each permutation was We could also consider a generalized chain of com- afunctionofhowmuchthepermutationdeviatesfrom ponentswheretheinteractionsbetweensitesorthecost theidentitypermutation. foranincorrectlyfilledsiteisnotconstantbutisdrawn In this model, we found that due to a state space fromadistributionofvalues. Suchasystemofquenched which could not be factorized in a basis defined by disorderwouldcharacterizeapermutationglasswhich lattice sites, even the superficially non-interacting sys- maycontaininterestingresultsduetotheuniquenature tem can exhibit phase-like transitions, i.e., temperature ofthestatespace. dependent changes in the value of the order parame- Supposingitispossibletodefinemoreinterestingin- ter which do note exhibit the properties typically as- teractions models, a natural investigation would con- sociated which phase transitions in infinite systems. cerntherenormalizationgrouppropertiesofthesystem. When interactions are introduced through a quadratic Specifically, we would be interested in how would one meanfieldterm,thesystemiscapableofexhibitingfive sumoverspecificstates(ascharacteristicofarenormal- regimesofthermalbehavior,andischaracterizedbytwo izationgrouptransformation)whenthestatespaceofa transition-temperaturescorrespondingtovariousquasi- systemlookslike, phasetransitions. The introduced model provides us with a basic ex- N actlysolublesystemforcertaininteractionassumptions = (42) system i S ⊗S andthusprovidesaconcretemodel-basedunderstand- i=1 Y ingof asystemwith anon-factorizablestatespace. Be- i.e.,isnotfactorizablealonglatticesites. cause of its utility and the type of results obtained, the modeldeservestobesubjecttothestandardextensions Finally,toconnectthismodelofpermutationstoprob- 9 lemsmorerelevanttoproteindesignitwouldprovenec- AppendixA:AlternativeDerivationsofEq.(31) essarytoincorporatethepossibilityofrepeatedcompo- nentsorthebackgroundgeometryofalatticechain. 1. Hubbard-StratonovichApproach Were-deriveEq.(31)usingtheHubbard-Stratonovich method. Westartthis derivationassumingλ = λ ; 2 2 −| | wewilllaterseeourresultingfreeenergycanbeanalyt- icallycontinuedtotheλ >0case. 2 Forλ = λ ,thepartitionfunctionis 2 2 −| | N Z (β;λ ,λ )= g (j)e−βλ1j+β|λ2|j2/2N. (A1) N 1 2 N ACKNOWLEDGMENTS Xj=0 Then,applyingtheidentity MW thanks Verena Kaynig-Fittkau for her unpub- eβ|λ2|j2/2N = N ∞ dxe−Nx2/2β|λ2|−jx, (A2) lGisihlseodn,wAorbkigtahilatPilnusmpmireedr, tVhiisnoitnhvaenstiMgaatnioonhaarnadn,Aamndy s2πβ|λ2|Z−∞ MichaelBrennerforhelpfuldiscussions. wehave Z (β;λ ,λ )= N ∞ dxe−Nx2/2β|λ2| N g (j)e−j(βλ1+x) N 1 2 N s2πβ|λ2|Z−∞ j=0 X = N ∞ dxe−Nx2/2β|λ2|Z (βλ +x), (A3) N 1 s2πβ|λ2|Z−∞ whereZ (x) N g (j)e−jx. FromEq.(11)wefound N ≡ j=0 N P ∞ Z (x)= dse−s 1+(s 1)e−x N. (A4) N − Z0 (cid:0) (cid:1) SoEq.(A3)becomes Z (β;λ ,λ )= N ∞ds ∞ dx 1+(s 1)e−βλ1−x Ne−s−Nx2/2β|λ2|. (A5) N 1 2 s2πβ|λ2|Z0 Z−∞ − (cid:0) (cid:1) Thefunctiontowhichweapplysteepestdescentisthen Solvingforsinthefirstequationwehave Nx2 s=N +1 eβλ1+x (A9) h(s,x)=s+ Nln 1+(s 1)e−βλ1−x . (A6) − 2β λ − − 2 | | andwiththesecondequationwehavethecondition (cid:0) (cid:1) Computingtheconditionsfor∂ h(s=s,x=x)=0and s x 1 ∂xh(s=s,x=x)=0weobtain,respectively, = (s 1). (A10) β λ −N − 2 | | e−βλ1−x 1 N =0 (A7) Substitutingthesecondconditionintothefirstyields − 1+(s 1)e−βλ1−x − x (s 1)e−βλ1−x s 1=N eβλ1−β|λ2|(s−1)/N, (A11) + − =0. (A8) β λ2 1+(s 1)e−βλ1−x − − | | − 10 or Wecanalsodefine e−β|λ2|(s−1)/N =eβλ1(N (s 1)). (A12) N − − (j) = (j)e−βλ0j, (A20) 0,N hO i O Thus,thesolutionforscanbeexpressedintermsofthe j=0 X LambertWfunctionas as the average with respect to our variational Hamilto- s 1 1 β λ nianEq.(A18). Thus,Eq.(A16)becomes − =1+ W | 2|eβλ1−β|λ2| . (A13) N β λ − N | 2| (cid:18) (cid:19) 1 λ F[ ] lnZ (βλ )+(λ λ ) j + 2 j2 N 0 1 0 0,N 0,N For λ > 0, we can employ the complex version of the H ≤−β − h i 2Nh i 2 Hubbard-Stratonovichidentity: f(λ ) (A21) 0 ≡ e−βλ2j2/2N = N ∞ dxe−Nx2/2βλ2−ijx. (A14) pDuiffteertehnetiamtianxgimfuwmitohfrtehsipseqctuatontλit0y.allGoiwvesnusjto com=- s2πβλ2 Z−∞ ∂lnZ (βλ )/∂(βλ ),wethenfind h i0,N N 0 0 − Working through an analogous steepestdescent proce- ∂ λ ∂ dure,wefindthattheequilibriumvalueforsis f′(λ )=(λ λ ) j + 2 j2 , (A22) 0 1 0 0,N 0,N − ∂λ h i 2N ∂λ h i 0 0 s 1 1 βλ j − =1 W 2eβλ1+βλ2 , (A15) whichifwetaketobezeroatsomeλ0 =λ0givesus N − βλ N ≡ N 2 (cid:18) (cid:19) ∂ λ ∂ which could have been extrapolated from Eq.(A13) by 0=(λ1 λ0) j 0,N + 2 j2 0,N . ltiabkriinugm|λc2o|n→diti−oλn,2.aFnrdomasthains eaxnparloesgsyiowniftohr tthheeenqouni-- − ∂λ0h i (cid:12)(cid:12)λ0=λ0 2N ∂λ0h i (cid:12)(cid:12)λ0(=Aλ203) To compute these deriv(cid:12)atives we make use of (cid:12)various interactingcase,itturnsouttheorderparameterinthis identities. Firstwenote caseisnotsbutrathers 1. − 1 ∂2 j2 = Z (βλ ), (A24) h i0,N Z (βλ )∂(βλ )2 N 0 N 0 0 so ∂ ∂2 j = lnZ (βλ ) 2. Gibbs-BogoliubovInequalityDerivationofEq.(31) ∂(βλ )h i0,N −∂(βλ )2 N 0 0 0 1 ∂2 = Z (βλ ) −Z (βλ )∂(βλ )2 N 0 We re-derive Eq.(31) using the Gibbs-Bogoliubov N 0 0 Inequality[10]. Theinequalityis 1 ∂ 2 + Z (βλ ) Z (βλ )2 ∂(βλ ) N 0 F[ ] F[ ]+ . (A16) N 0 (cid:18) 0 (cid:19) H ≤ H0 hH−H0i0 = j2 + j 2 . (A25) −h i0,N h i0,N TheHamiltonianwhichdefinesoursystemis Thislastequalityimplies N λ λ H=λ1Xi=1Iθi6=ωi + 2N2 Xi,j Iθi6=ωiIθj6=ωj ≡λ1j+ 2N2 j2, ∂(β∂λ0)hj2i0,N =−∂∂2(hβjλi00,)N2 +2hji0,N∂∂h(jβiλ0,0N), (A26) (A17) andourvariationalHamiltonianisinstead andsoEq.(A23)becomes N λ ∂ 2 H0 =λ0i=1Iθi6=ωi =λ0j. (A18) 0=(cid:20)λ1−λ0+ Nhji0,N(cid:21)∂λ0hji0,N(cid:12)λ0=λ0 X λ ∂2 j (cid:12) 2 h i0,N (cid:12) (A27) FromEq.(11)weknow − 2Nβ ∂λ20 λ0=λ0 (cid:12) (cid:12) 1 Tocomputethesequantities(cid:12)weneedtoapproximatethe F[ ]= lnZ (βλ ) 0 N 0 H −β partitionfunctionforourvariationalsystem. Usingthe = 1 ln ∞dse−s 1+(s 1)e−βλ0 N . −β − (cid:26)Z0 (cid:27) (cid:0) (cid:1) (A19)