loading

Logout succeed

Logout succeed. See you again!

ebook img

Taylor Expansions and Numerical Approximations for Stochastic Partial Differential Equations PDF

pages212 Pages
release year2010
file size3.22 MB
languageEnglish

Preview Taylor Expansions and Numerical Approximations for Stochastic Partial Differential Equations

TaylorexpansionsforSODEs TaylorexpansionsforSPDEs AnewnumericalmethodforSPDEswithnon-additivenoise AnewnumericalmethodforSPDEswithadditivenoise Taylor Expansionsand Numerical Approximationsfor Stochastic Partial Differential Equations A.Jentzen JointworkswithP.E.KloedenandM.Röckner FacultyofMathematics BielefeldUniversity 12thAugust2010 A.Jentzen TaylorExpansionsforSPDEs TaylorexpansionsforSODEs TaylorexpansionsforSPDEs AnewnumericalmethodforSPDEswithnon-additivenoise AnewnumericalmethodforSPDEswithadditivenoise Content 1 TaylorexpansionsforSODEs 2 TaylorexpansionsforSPDEs 3 AnewnumericalmethodforSPDEswithnon-additivenoise 4 AnewnumericalmethodforSPDEswithadditivenoise A.Jentzen TaylorExpansionsforSPDEs TaylorexpansionsforSODEs TaylorexpansionsforSPDEs AnewnumericalmethodforSPDEswithnon-additivenoise AnewnumericalmethodforSPDEswithadditivenoise Content 1 TaylorexpansionsforSODEs 2 TaylorexpansionsforSPDEs 3 AnewnumericalmethodforSPDEswithnon-additivenoise 4 AnewnumericalmethodforSPDEswithadditivenoise A.Jentzen TaylorExpansionsforSPDEs TaylorexpansionsforSODEs TaylorexpansionsforSPDEs AnewnumericalmethodforSPDEswithnon-additivenoise AnewnumericalmethodforSPDEswithadditivenoise LetT > 0andlet(Ω,F,P)beaprobabilityspace.Letf,g : R→ Rbe smoothfunctionsandlet(W) beascalarBrownianmotion. t t∈[0,T] ConsidertheSODE: dX = f(X )dt +g(X )dW, t t t t whichisunderstoodas t t X = X + f(X )ds+ g(X )dW t 0 s s s Z0 Z0 P-a.s.forallt ∈ [0,T].ApplyingItˆo’sformulatotheintegrandsaboveyields t t s X ≈ X +f(X )·t +g(X )· dW +g′(X )g(X )· dW dW t 0 0 0 s 0 0 u s Z0 Z0 Z0 1 = X +f(X )·t +g(X )·W + ·g′(X )g(X )· (W)2−t P-a.s. 0 0 0 t 0 0 t 2 (cid:0) (cid:1) Milstein’sapproximation(1974). A.Jentzen TaylorExpansionsforSPDEs TaylorexpansionsforSODEs TaylorexpansionsforSPDEs AnewnumericalmethodforSPDEswithnon-additivenoise AnewnumericalmethodforSPDEswithadditivenoise LetT > 0andlet(Ω,F,P)beaprobabilityspace.Letf,g : R→ Rbe smoothfunctionsandlet(W) beascalarBrownianmotion. t t∈[0,T] ConsidertheSODE: dX = f(X )dt +g(X )dW, t t t t whichisunderstoodas t t X = X + f(X )ds+ g(X )dW t 0 s s s Z0 Z0 P-a.s.forallt ∈ [0,T].ApplyingItˆo’sformulatotheintegrandsaboveyields t t s X ≈ X +f(X )·t +g(X )· dW +g′(X )g(X )· dW dW t 0 0 0 s 0 0 u s Z0 Z0 Z0 1 = X +f(X )·t +g(X )·W + ·g′(X )g(X )· (W)2−t P-a.s. 0 0 0 t 0 0 t 2 (cid:0) (cid:1) Milstein’sapproximation(1974). A.Jentzen TaylorExpansionsforSPDEs TaylorexpansionsforSODEs TaylorexpansionsforSPDEs AnewnumericalmethodforSPDEswithnon-additivenoise AnewnumericalmethodforSPDEswithadditivenoise LetT > 0andlet(Ω,F,P)beaprobabilityspace.Letf,g : R→ Rbe smoothfunctionsandlet(W) beascalarBrownianmotion. t t∈[0,T] ConsidertheSODE: dX = f(X )dt +g(X )dW, t t t t whichisunderstoodas t t X = X + f(X )ds+ g(X )dW t 0 s s s Z0 Z0 P-a.s.forallt ∈ [0,T].ApplyingItˆo’sformulatotheintegrandsaboveyields t t s X ≈ X +f(X )·t +g(X )· dW +g′(X )g(X )· dW dW t 0 0 0 s 0 0 u s Z0 Z0 Z0 1 = X +f(X )·t +g(X )·W + ·g′(X )g(X )· (W)2−t P-a.s. 0 0 0 t 0 0 t 2 (cid:0) (cid:1) Milstein’sapproximation(1974). A.Jentzen TaylorExpansionsforSPDEs TaylorexpansionsforSODEs TaylorexpansionsforSPDEs AnewnumericalmethodforSPDEswithnon-additivenoise AnewnumericalmethodforSPDEswithadditivenoise LetT > 0andlet(Ω,F,P)beaprobabilityspace.Letf,g : R→ Rbe smoothfunctionsandlet(W) beascalarBrownianmotion. t t∈[0,T] ConsidertheSODE: dX = f(X )dt +g(X )dW, t t t t whichisunderstoodas t t X = X + f(X )ds+ g(X )dW t 0 s s s Z0 Z0 P-a.s.forallt ∈ [0,T].ApplyingItˆo’sformulatotheintegrandsaboveyields t t s X ≈ X +f(X )·t +g(X )· dW +g′(X )g(X )· dW dW t 0 0 0 s 0 0 u s Z0 Z0 Z0 1 = X +f(X )·t +g(X )·W + ·g′(X )g(X )· (W)2−t P-a.s. 0 0 0 t 0 0 t 2 (cid:0) (cid:1) Milstein’sapproximation(1974). A.Jentzen TaylorExpansionsforSPDEs TaylorexpansionsforSODEs TaylorexpansionsforSPDEs AnewnumericalmethodforSPDEswithnon-additivenoise AnewnumericalmethodforSPDEswithadditivenoise LetT > 0andlet(Ω,F,P)beaprobabilityspace.Letf,g : R→ Rbe smoothfunctionsandlet(W) beascalarBrownianmotion. t t∈[0,T] ConsidertheSODE: dX = f(X )dt +g(X )dW, t t t t whichisunderstoodas t t X = X + f(X )ds+ g(X )dW t 0 s s s Z0 Z0 P-a.s.forallt ∈ [0,T].ApplyingItˆo’sformulatotheintegrandsaboveyields t t s X ≈ X +f(X )·t +g(X )· dW +g′(X )g(X )· dW dW t 0 0 0 s 0 0 u s Z0 Z0 Z0 1 = X +f(X )·t +g(X )·W + ·g′(X )g(X )· (W)2−t P-a.s. 0 0 0 t 0 0 t 2 (cid:0) (cid:1) Milstein’sapproximation(1974). A.Jentzen TaylorExpansionsforSPDEs TaylorexpansionsforSODEs TaylorexpansionsforSPDEs AnewnumericalmethodforSPDEswithnon-additivenoise AnewnumericalmethodforSPDEswithadditivenoise LetT > 0andlet(Ω,F,P)beaprobabilityspace.Letf,g : R→ Rbe smoothfunctionsandlet(W) beascalarBrownianmotion. t t∈[0,T] ConsidertheSODE: dX = f(X )dt +g(X )dW, t t t t whichisunderstoodas t t X = X + f(X )ds+ g(X )dW t 0 s s s Z0 Z0 P-a.s.forallt ∈ [0,T].ApplyingItˆo’sformulatotheintegrandsaboveyields t t s X ≈ X +f(X )·t +g(X )· dW +g′(X )g(X )· dW dW t 0 0 0 s 0 0 u s Z0 Z0 Z0 1 = X +f(X )·t +g(X )·W + ·g′(X )g(X )· (W)2−t P-a.s. 0 0 0 t 0 0 t 2 (cid:0) (cid:1) Milstein’sapproximation(1974). A.Jentzen TaylorExpansionsforSPDEs TaylorexpansionsforSODEs TaylorexpansionsforSPDEs AnewnumericalmethodforSPDEswithnon-additivenoise AnewnumericalmethodforSPDEswithadditivenoise LetT > 0andlet(Ω,F,P)beaprobabilityspace.Letf,g : R→ Rbe smoothfunctionsandlet(W) beascalarBrownianmotion. t t∈[0,T] ConsidertheSODE: dX = f(X )dt +g(X )dW, t t t t whichisunderstoodas t t X = X + f(X )ds+ g(X )dW t 0 s s s Z0 Z0 P-a.s.forallt ∈ [0,T].ApplyingItˆo’sformulatotheintegrandsaboveyields t t s X ≈ X +f(X )·t +g(X )· dW +g′(X )g(X )· dW dW t 0 0 0 s 0 0 u s Z0 Z0 Z0 1 = X +f(X )·t +g(X )·W + ·g′(X )g(X )· (W)2−t P-a.s. 0 0 0 t 0 0 t 2 (cid:0) (cid:1) Milstein’sapproximation(1974). A.Jentzen TaylorExpansionsforSPDEs

See more

The list of books you might like