loading

Logout succeed

Logout succeed. See you again!

ebook img

The Minimal Model for Dark Matter and Unification PDF

file size1.2 MB
languageEnglish

Preview The Minimal Model for Dark Matter and Unification

MIT-CTP-3689 HUTP-05/A0044 The Minimal Model for Dark Matter and Unification Rakhi Mahbubania, Leonardo Senatoreb, 6 ∗ 0 0 a Jefferson Physical Laboratory, 2 Harvard University, Cambridge MA 02138 n a J b Center for Theoretical Physics, 4 Massachusetts Institute of Technology, Cambridge, MA 02139 2 2 v 4 6 Abstract 0 0 1 Gauge coupling unification and the success of TeV-scale weakly interacting dark matter are usually 5 taken as evidence of low energy supersymmetry (SUSY). However, if we assume that the tuning of 0 the higgs can be explained in some unnatural way, from environmental considerations for example, / h SUSY is no longer a necessary component of any Beyond the Standard Model theory. In this paper p we study the minimal model with a dark matter candidate and gauge coupling unification. This - p consists of the SM plus fermions with the quantum numbers of SUSY higgsinos, and a singlet. It e h predicts thermal dark matter with a mass that can range from 100 GeV to around 2 TeV and : generically gives rise to an electric dipole moment (EDM) that is just beyond current experimental v i limits, with a large portion of its allowed parameter space accessible to next generation EDM and X direct detection experiments. We study precision unification in this model by embedding it in a 5-D r a orbifold GUT where certain large threshold corrections are calculable, achieving gauge coupling and b-τ unification, and predicting a rate of proton decay just beyond current limits. 1 Introduction Over the last few decades the search for physics beyond the Standard Model (SM) has largely been driven by the principle of naturalness, according to which the parameters of a low energy effective field theory like the SM should not be much smaller than the contributions that come from running them up to the cutoff. This principle can be used to constrain the couplings of the effective theory with positive mass dimension, which have a strong dependence on UV physics. Requiring no fine tuning between bare parameters and the corrections they receive from renormalization means that the theory must have a low cutoff. New physics can enter at this scale to literally cut off the high-energy contributions from renormalization. ∗ This work is supported in part by funds provided by the U.S. Department of Energy (D.O.E) under cooperative researchagreement DF-FC02-94ER40818 1 In the specific case of the SM the effective lagrangian contains two relevant parameters: the higgs mass and the cosmological constant (c.c), both of which give rise to problems concerning the interpretation of the low energy theory. Any discussion of large discrepancies between expectation and observation must begin with what is known as the c.c. problem. This relates to our failure to find a well-motivated dynamical explanation for the factor of 10120 between the observed c.c and the naive contribution to it from renormalization which is proportional to Λ4, where Λ is the cutoff of the theory, usually taken to be equal to the Planck scale. Until very recently there was still hope in the high energy physics community that the c.c. might be set equal to zero by some mysterious symmetry of quantum gravity. This possibility has become increasingly unlikely with time since the observationthatouruniverseisacceleratingstronglysuggeststhepresenceofanon-zerocosmological constant [1, 2]. A less extreme example is the hierarchy between the higgs mass and the GUT scale which can be explained by SUSY breaking at around a TeV. Unfortunately the failure of indirect searches to find light SUSY partners has brought this possibility into question, since it implies the presence of some small fine-tuning in the SUSY sector. This ‘little hierarchy’ problem [3, 4] raises some doubts about the plausibility of low energy SUSY as an explanation for the smallness of the higgs mass. Both these problems can be understood from a different perspective: the fact that the c.c. and the higgs mass are relevant parameters means that they dominate low energy physics, allowing them to determine very gross properties of the effective theory. We might therefore be able to put limits on them by requiring that this theory satisfy the environmental conditions necessary for the universenottobeempty. ThisapproachwasfirstusedbyWeinberg[5]todeduceanupperboundon the cosmological constant from structure formation, and was later employed to solve the hierarchy problem in an analogous way by invoking the atomic principle [6]. Potential motivation for this class of argument can be found in the string theory landscape. At low energies some regions of the landscape can be thought of as a field theory with many vacua, each having different physical properties. It is possible to imagine that all these vacua might have been equally populated in the early universe, but observers can evolve only in the few where the low energy conditions are conducive to life. The number of vacua with this property can be such a small proportion of the total as to dwarf even the tuning involved in the c.c. problem; resolving the hierarchy problem similarly needs no further assumptions. This mechanism for dealing with both issues simultaneously by scanning all relevant parameters of the low energy theory within a landscape was recently proposed in [7, 8]. From this point of view there seems to be no fundamental inconsistency with having the SM be the complete theory of our world up to the Planck scale; nevertheless this scenario presents various problems. Firstly there is increasing evidence for dark matter (DM) in the universe, and current cosmological observations fit well with the presence of a stable weakly interacting particle at around the TeV scale. The SM contains no such particle. Secondly, from a more aesthetic viewpoint gauge couplings do not quite unify at high energies in the SM alone; adding weakly interacting particles changes the running so unification works better. A well-motivated example of a model that does this is Split Supersymmetry [7], which is however not the simplest possible theory of this type. In light of this we study the minimal model with a finely-tuned higgs and a good thermal dark matter candidate proposed in [8], which also allows for gauge coupling unification. Although a systematic analysis of thecomplete set of such models was carried outin [9], the simplestonewe studyherewas missed because the authors did not consider the possibility of having large UV threshold corrections that fix unification, as well as a GUT mechanism suppressing proton decay. Adding just two ‘higgsino’ doublets1 to the SM improves unification significantly. This model 1Here ‘higgsino’is just a mnemonic for their quantumnumbers,asthese particleshavenothing to do with 2 is highly constrained since it contains only one new parameter, a Dirac mass term for the doublets (‘µ’), the neutral components of which make ideal DM candidates for 990 GeV. µ . 1150 GeV (see [9] for details). However a model with pure higgsino dark matter is excluded by direct detection experimentssincethedegenerateneutralinoshaveunsuppressedvector-likecouplingstotheZ boson, giving rise to a spin-independentdirect detection cross-section that is 2-3 orders of magnitude above current limits2 [10, 11]. To circumvent this problem, it suffices to include a singlet (‘bino’) at some relatively high energy (. 109 GeV), with yukawa couplings with the higgsinos and higgs, to lift the mass degeneracy between the ‘LSP’ and ‘NLSP’3 by order 100 keV [12], as explained in Appendix A. The instability of such a large mass splitting between the higgsinos and bino to radiative corrections, which tend to make the higgsinos as heavy as the bino, leads us to consider these masses to be separated by at most two orders of magnitude, which is technically natural. We willseethattheyukawainteractions allow theDMcandidatetobeasheavyas2.2TeV.Thereisalso a single reparametrization invariant CP violating phase which gives rise to a two-loop contribution to the electron EDM that is well within the reach of next-generation experiments. Our paper is organized as follows: in Section 2 we briefly introduce the model, in Section 3 we study the DM relic density in different regions of our parameter space with a view to constraining these parameters; we look more closely at the experimental implications of this model in the context of dark matter direct detection and EDM experiments in Sections 4 and 5. Next we study gauge coupling unification at two loops. We find that this is consistent modulo unknown UV threshold corrections, however the unification scale is too low to embed this model in a simple 4D GUT. This is not necessarily a disadvantage since 4D GUTs have problems of their own, in splitting the higgs doublet and triplet for example. A particularly appealing way to solve all these problems is by embeddingourmodelina5DorbifoldGUT,inwhichwecan calculate alllargethresholdcorrections and achieve unification. We also find a particular model with b-τ unification and a proton lifetime just above current bounds. We conclude in Section 7. 2 The Model Asmentionedabove,themodelwestudyconsistsoftheSMwiththeadditionoftwofermiondoublets with thequantum numbersof SUSYhiggsinos, plusa singlet bino, with thefollowing renormalizable interaction terms: 1 µΨ Ψ + M Ψ Ψ +λ Ψ hΨ +λ Ψ h†Ψ (1) u d 1 s s u u s d d s 2 where Ψ is the bino, Ψ are the higgsinos, h is the finely-tuned higgs. s u,d We forbid all other renormalizable couplings to SM fields by imposing a parity symmetry under which our additional particles are odd whereas all SM fields are even. As in SUSY conservation of this parity symmetry implies that our LSP is stable. Thesizeoftheyukawacouplingsbetweenthenewfermionsandthehiggsarelimitedbyrequiring perturbativity to the cutoff. For equal yukawas this constrains λ (M ) = λ (M ) 0.88, while if u Z d Z ≤ we take one of the couplings to be small, say λ (M )= 0.1 then λ (M ) can be as large as 1.38. d Z u Z The above couplings allow for the CP violating phase θ = Arg(µM λ∗λ∗), giving 5 free pa- 1 u d rameters in total. In spite of its similarity to the MSSM (and Split SUSY) weak-ino sector, there the SUSY partners of the higgs. 2A model obtained adding a single higgsino doublet, although more minimal, is anomalous and hence is not considered here. 3From here on we will refer to these particles and couplings by their SUSY equivalents without the quotation marks for simplicity. 3 are a number of important differences which have a qualitative effect on the phenomenology of the model, especially from the perspective of the relic density. Firstly a bino-like LSP, which usually mixes with the wino, will generically annihilate less effectively in this modelsince thewinois absent. Secondly the new yukawa couplings are free parameters so they can get much larger than in Split SUSY,wheretheusualrelation togauge couplingsisimposedatthehighSUSYbreakingscale. This will play a crucial role in the relic density calculation since larger yukawas means greater mixing in the neutralino sector as well as more efficient annihilation, especially for the bino which is a gauge singlet. Our 3 3 neutralino mass matrix is shown below: × M λ v λ v 1 u d M = λ v 0 µeiθ N u  −  λ v µeiθ 0 d −   for v = 174 GeV, where we have chosen to put the CP violating phase in the µ term. The chargino is the charged component of the higgsino with tree level mass µ. It is possible to get a feel for the behavior of this matrix by diagonalizing it perturbatively for small off-diagonal terms, this is done in Appendix A. 3 Relic Abundance In this section we study the regions of parameter space in which the DM abundanceis in accordance the post-WMAP 2σ region 0.094 < Ω h2 < 0.129 [2], where Ω is the fraction of today’s critical dm dm density in DM, and h= 0.72 0.05 is the Hubble constant in units of 100 km/(s Mpc). ± As in Split SUSY, the absence of sleptons in our model greatly decreases the number of decay channels available to the LSP [13, 14]. Also similar to Split SUSY is the fact that our higgs can be heavier than in the MSSM (in our case the higgs mass is actually a free parameter), hence new decay channels will be available to it, resulting in a large enhancement of its width especially near the WW and ZZ thresholds. This in turn makes accessible neutralino annihilation via a resonant higgs, decreasing the relic density in regions of the parameter space where this channel is accessible. For a very bino-like LSP this is easily the dominant annihilation channel, allowing the bino density to decrease to an acceptable level. We use a modified version of the DarkSUSY [15] code for our relic abundance calculations, explicitly adding the resonant decay of the heavy higgs to W and Z pairs. As mentioned in the previous section there are also some differences between our model and Split SUSY that are relevant to this discussion: the first is that the Minimal Model contains no winoequivalent (this feature also distinguishes this model from that in [16], which contains a similar dark matter analysis). Thesecond difference concerns thesize of the yukawa couplings which govern this mixing, as well as the annihilation cross-section to higgses. Rather than being tied to the gauge couplings at the SUSY breaking scale, these couplings are limited only by the constraint of perturbativity to the cutoff. This means that the yukawas can be much larger in our model, helping a bino-like LSP to both mix more and annihilate more efficiently. These effects are evident in our results and will be discussed in more detail below. We will restrict our study of DM relic abundance and direct detection in this model to the case with no CP violating phase (θ = 0,π); we briefly comment on the general case in Section 5. Our resultsfordifferentvaluesoftheyukawacouplingsareshowninFigure1below,inwhichwehighlight the points in the µ-M plane that give rise to a relic density within the cosmological bound. The 1 higgs is relatively heavy (M = 160 GeV) in this plot in order to access processes with resonant higgs 4 annihilation through an s-channel higgs. As we will explain below the only effect this has is to allow a low mass region for a bino-like LSP with M M /2. 1 higgs ∼ 3000 (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)H(cid:0)(cid:0)(cid:1)(cid:1)igg(cid:0)(cid:0)(cid:1)(cid:1)sin(cid:0)(cid:0)(cid:1)(cid:1)oL(cid:0)(cid:0)(cid:1)(cid:1)SP(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) 2000 ) V Ge annihilatestoomuch annihilatestoolittle ( 1 M 1000 (cid:0)(cid:0)(cid:1)(cid:1)θs=g(cid:0)(cid:0)(cid:1)(cid:1)n0(,(cid:0)(cid:0)(cid:1)(cid:1)mλ(cid:0)(cid:0)(cid:1)(cid:1)u=)(cid:0)(cid:0)(cid:1)(cid:1)=0.+1(cid:0)(cid:0)(cid:1)(cid:1),, mλ(cid:0)(cid:0)(cid:1)(cid:1)h=(cid:0)(cid:0)(cid:1)(cid:1)=0(cid:0)(cid:0)(cid:1)(cid:1)1.15(cid:0)(cid:0)(cid:1)(cid:1)9.(cid:0)(cid:0)(cid:1)(cid:1)5, (cid:0)(cid:0)(cid:1)(cid:1)lu(cid:0)(cid:0)(cid:1)(cid:1)=0(cid:0)(cid:0)(cid:1)(cid:1).1(cid:0)(cid:0)(cid:1)(cid:1), l(cid:0)(cid:0)(cid:1)(cid:1)d=(cid:0)(cid:0)(cid:1)(cid:1)0.(cid:0)(cid:0)(cid:1)(cid:1)1 (cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)u (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)d(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:0)(cid:1)(cid:1)θs=g(cid:0)(cid:0)(cid:1)(cid:1)nπ((cid:0)(cid:0)(cid:1)(cid:1),mλ(cid:0)(cid:0)(cid:1)(cid:1)u=)(cid:0)(cid:0)(cid:1)(cid:1)=0-.(cid:0)(cid:0)(cid:1)(cid:1)1, ,m(cid:0)(cid:0)(cid:1)(cid:1)λh(cid:0)(cid:0)(cid:1)(cid:1)==01(cid:0)(cid:0)(cid:1)(cid:1).519(cid:0)(cid:0)(cid:1)(cid:1).5(cid:0)(cid:0)(cid:1)(cid:1), l(cid:0)(cid:0)(cid:1)(cid:1)u=(cid:0)(cid:0)(cid:1)(cid:1)0(cid:0)(cid:0)(cid:1)(cid:1).1,(cid:0)(cid:0)(cid:1)(cid:1) ld(cid:0)(cid:0)(cid:1)(cid:1)=0(cid:0)(cid:0)(cid:1)(cid:1).1(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)u (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)d(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)Bi(cid:0)(cid:1)no(cid:0)(cid:1)LS(cid:0)(cid:1)P (cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)θs=g(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)n0(,(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)mλ(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)uu=)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)=0.+8(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)18,,(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)mλd(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)h==(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)01.85(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)89(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1).5,(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)lu(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)=0(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1).8(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)8,(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)ld=(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)0(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1).88(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1) (cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1) (cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)θs=g(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)nπ((cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1),mλ(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)uu=)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)=0-.(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)8, 8m,(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)λh(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)d==1(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)05.89(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)8.5(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1), l(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)u=(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)0(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1).88(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1),l(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)d=(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)0.(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)88(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1) (cid:0)(cid:0)(cid:1)(cid:1)θs=g(cid:0)(cid:0)(cid:1)(cid:1)n0(,(cid:0)(cid:0)(cid:1)(cid:1)mλ(cid:0)(cid:0)(cid:1)(cid:1)uu=)(cid:0)(cid:0)(cid:1)(cid:1)=1.+3(cid:0)(cid:0)(cid:1)(cid:1),8 ,m(cid:0)(cid:0)(cid:1)(cid:1)λhd(cid:0)(cid:0)(cid:1)(cid:1)==(cid:0)(cid:0)(cid:1)(cid:1)10.51(cid:0)(cid:0)(cid:1)(cid:1)9.(cid:0)(cid:0)(cid:1)(cid:1)5,l(cid:0)(cid:0)(cid:1)(cid:1)u=(cid:0)(cid:0)(cid:1)(cid:1)0(cid:0)(cid:0)(cid:1)(cid:1).1,(cid:0)(cid:0)(cid:1)(cid:1)ld(cid:0)(cid:0)(cid:1)(cid:1)=1(cid:0)(cid:0)(cid:1)(cid:1).3(cid:0)(cid:0)(cid:1)(cid:1)8 (cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:0)(cid:1)(cid:1)sθg=(cid:0)(cid:0)(cid:1)(cid:1)nπ((cid:0)(cid:0)(cid:1)(cid:1),mλ(cid:0)(cid:0)(cid:1)(cid:1)uu=)(cid:0)(cid:0)(cid:1)(cid:1)=1-.(cid:0)(cid:0)(cid:1)(cid:1)3, 8m(cid:0)(cid:0)(cid:1)(cid:1),hλ(cid:0)(cid:0)(cid:1)(cid:1)d==1(cid:0)(cid:0)(cid:1)(cid:1)05.91(cid:0)(cid:0)(cid:1)(cid:1).5(cid:0)(cid:0)(cid:1)(cid:1), l(cid:0)(cid:0)(cid:1)(cid:1)u=(cid:0)(cid:0)(cid:1)(cid:1)1(cid:0)(cid:0)(cid:1)(cid:1).39(cid:0)(cid:0)(cid:1)(cid:1), (cid:0)(cid:0)(cid:1)(cid:1)ld=(cid:0)(cid:0)(cid:1)(cid:1)0(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) 0 0 500 1000 1500 2000 2500 3000 µ(GeV) Figure 1: Graph showing regions of parameter space consistent with WMAP. Notice that the relic abundance seems to be consistent with a dark matter mass as large as 2.2 TeV. Although a detailed analysis of the LHC signature of this model is not within the scope of this paper, it is clear that a large part of this parameter space will be inaccessible at LHC. The pure higgsino region for example, will clearly be hard to explore since the higgsinos are heavy and also very degenerate. There is more hope in the bino LSP region for a light enough spectrum. While analyzing these results we must keep in mind that Ω 10−9GeV−2/ σ , where σ dm eff eff ∼ h i h i is an effective annihilation cross section for the LSP at the freeze out temperature, which takes into consideration all coannihilation channels as well as the thermal average [17]. It will be useful to approximate this quantity as the cross-section for the dominant annihilation channel. Although rough, this approximation will help us build some intuition on the behavior of the relic density in different parts of the parameter space. We will not discuss the region close to the origin where the interpretation of the results become more involved due to large mixing and coannihilation. 3.1 Higgsino Dark Matter In order to get a feeling for thestructure of Figure 1, it is usefulto begin by looking at the regions in whichthephysicsismostsimple. Thiscanbeachievedbydiminishingthethenumberofannihilation channels that are available to the LSP by taking the limit of small yukawa couplings. For θ = 0, mixing occurs only on the diagonal M = µ to a very good approximation (see 1 Appendix A and Figure 2), hence the region above the diagonal corresponds to a pure higgsino LSP 5 3000 3000 0.01 0.998 2000 M (GeV)1 ~ 0 0.9960.997 M (GeV)12000 0.03 0.1 0.994 0.5 0.8 1000 0.99 1000 0.9 0.98 0.97 −8 0.97 10 0.9 0.99 0.8 0 1000 2000 3000 0 1000 2000 3000 µ(GeV) µ(GeV) (a) θ=0 (b) θ=π Figure 2: Gaugino fraction contours for λu =λd =0.88 and θ=0 (left),π (right). with mass µ. For λ = λ = 0.1 the yukawa interactions are irrelevant and the LSP dominantly u d annihilates by t-channel neutral (charged) higgsino exchange to ZZ (WW) pairs. Charginos, which have a tree-level mass µ and are almost degenerate with the LSP, coannihilate with it, decreasing the relic density by a factor of 3. This fixes the LSP mass to bearound µ = 1 TeV, giving rise to the wide vertical band that can be seen in the figure; for smaller µ the LSP over-annihilates, for larger µ it does not annihilate enough. Increasing the yukawa couplings increases the importance of t-channel bino exchange to higgs pairs. Notice that taking the limit M µ makes this new interaction irrelevant, therefore the 1 ≫ allowed region converges to theone in which only gauge interactions are effective. Taking this as our startingpoint,asweapproachthediagonalthemassofthebinodecreases,causingthet-channelbino exchange process to become less suppressedand increasing the total annihilation cross-section. This explains the shift to higher masses, which is more pronounced for larger yukawas as expected and peaks along the diagonal where the higgsino and bino are degenerate and the bino mass suppression is minimal. The increased coannihilation between higgsinos and binos close to the diagonal does not play a large part here since both particles have access to a similar t-channel diagram. Taking θ = π makes little qualitative difference when either of the yukawas is small compared to M or µ, since in this limit the angle is unphysical and can be rotated away by a redefinition of the 1 higgsino fields. However we can see in Figure 2 that for large yukawas the region above the diagonal M = µ changes to a mixed state, rather than being pure higgsino as before. Starting again with 1 the large M limit and decreasing M decreases the mass suppressionof the t-channel bino exchange 1 1 diagram like in the θ = 0 case, butthe LSP also starts to mix more with the bino, an effect that acts in the opposite direction and decreases σ . This effect happens to outweigh the former, forcing eff h i the LSP to shift to lower masses in order to annihilate enough. With θ = π and yukawas large enough, there is an additional allowed region for µ < M . In W this region the higgsino LSP is too light to annihilate to on-shell gauge bosons, so the dominant annihilation channels are phase-space suppressed. Furthermore if the splitting between the chargino 6 and the LSP is large enough, the effect of coannihilation with the chargino into photon and on- shell W is Boltzmann suppressed,substantially decreasing the effective cross-section, and giving the right relic abundance even with such a light higgsino LSP. Although acceptable from a cosmological standpoint, this region is excluded by direct searches since it corresponds to a chargino that is too light. 3.2 Bino Dark Matter The region below the diagonal M = µ corresponds to a bino-like LSP. Recall that in the absence of 1 yukawa couplings pure binos in this model do not couple to anything and hence cannot annihilate at all. Turning on the yukawas allows them to mix with higgsinos which have access to gauge annihilation channels. For λ = λ = 0.1 this effect is only large enough when M and µ are u d 1 comparable (in fact when they are equal, the neutralino states are maximally mixed for arbitrarily small off-diagonal terms), explaining the stripe near the diagonal in Figure 1. Once µ gets larger than 1 TeV even pure higgsinos are too heavy to annihilate efficiently; this means that mixing ∼ is no longer sufficient to decrease the dark matter relic density to acceptable values and the stripe ends. Increasing the yukawas beyond a certain value (λ = λ = 0.88, which is slightly larger than u d their values in Split SUSY, is enough), makes t-channel annihilation to higgses become large enough that a bino LSP does not need to mix at all in order to have the correct annihilation cross-section. This gives rise to an allowed region which is in the shape of a stripe, where for fixed M the correct 1 annihilation cross-section is achieved only for the small range of µ that gives the right t-channel suppression. As M increases the stripe converges towards the diagonal in order to compensate for 1 the increase in LSP mass by increasing the cross-section. Once the diagonal is reached this channel cannot be enhanced any further, and there is no allowed region for heavier LSPs. In addition the cross-section for annihilation through an s-channel resonant higgs, even though CP suppressed (see Section 5for details), becomes large enough to allow even LSPs thatare very purebinoto annihilate in this way. The annihilation rate for this process is not very sensitive to the mixing, explaining the apparent horizontal line at M = 1M 80 GeV. This line ends when µ grows to the point 1 2 higgs ∼ where the mixing is too small. As in the higgsino case, taking θ = π changes the shape of the contours of constant gaugino fraction and spreads them out in the plane (see Figure 2), making mixing with higgsinos relevant throughout the region. For small M , the allowed region starts where the mixing term is small 1 enough for the combination of gauge and higgs channels not to cause over-annihilation. Increasing M again makes the region move towards the diagonal, where the increase in LSP mass is countered 1 by increasing the cross-section for the gauge channel from mixing more. Foreitheryukawaverylarge(λ = 1.38,λ = 0.1), annihilationtohiggsesviat-channelhiggsinos u d is so efficient that this process alone is sufficient to give bino-like LSPs the correct abundance. As M increases the allowed region again moves towards the diagonal in such a way as to keep the 1 effective cross-section constant by decreasing the higgsino mass suppression, thus compensating for the increase in LSP mass. As we remarked earlier since λ is effectively zero in this case, the angle d θ is unphysical and can be rotated away by a redefinition of the higgsino fields. 4 Direct Detection Dark matter is also detectable through elastic scatterings off ordinary matter. The direct detection cross-section for this process can be divided up into a spin-dependent and a spin-independent part; 7 we will concentrate on the former since it is usually dominant. As before we restrict to θ = 0 and π, we expect the result not to change significantly for intermediate values. The spin-independent interaction takes place through higgs exchange, via the yukawa couplings which mix higgsinos and binos. Since the only χ0χ0h term in our model involves the product of 1 1 the gaugino and higgsino fractions, the more mixed our dark matter is the more visible it will be to direct detection experiments. This effect can be seen in Fig 3 below. Current bound 1e-42 Proposed bound from next−generation experiments 1e-45 ) 2 m c ( ) n o e cl 1e-48 (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) u (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) n (cid:0)(cid:1)θb=l(cid:0)(cid:1)a0h,(cid:0)(cid:1)λ(cid:0)(cid:1)=0(cid:0)(cid:1).8(cid:0)(cid:1)8,(cid:0)(cid:1)λ (cid:0)(cid:1)=0(cid:0)(cid:1).88(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) σχ(- (cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)θb=l(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)aπh,(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)λuu(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)=(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)0.8(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)8,(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)λdd(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)=0(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1).8(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)8 (cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1) (cid:0)(cid:1)θb=l(cid:0)(cid:1)a0h,(cid:0)(cid:1)λ(cid:0)(cid:1)=1(cid:0)(cid:1).3(cid:0)(cid:1)8,(cid:0)(cid:1)λ (cid:0)(cid:1)=0(cid:0)(cid:1).1(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)u(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)d(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:0)(cid:1)(cid:1)θb=l(cid:0)(cid:0)(cid:1)(cid:1)aπh,(cid:0)(cid:0)(cid:1)(cid:1)λu(cid:0)(cid:0)(cid:1)(cid:1)=(cid:0)(cid:0)(cid:1)(cid:1)0.1(cid:0)(cid:0)(cid:1)(cid:1), λ(cid:0)(cid:0)(cid:1)(cid:1)d=(cid:0)(cid:0)(cid:1)(cid:1)0.(cid:0)(cid:0)(cid:1)(cid:1)1 (cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) 1e-51 (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) 1e-54 0 500 1000 1500 2000 2500 3000 M (GeV) χ Figure 3: Spin-independentpartofdarkmatterdirectdetectioncross-section. Thecurrentboundrepresents the CDMS limit [11], and, as an indicative value for the proposed bound from next generation experiments, we take the projected sensitivity of SuperCDMS phase B [18]. Although it seems like we cannot currently use this measure as a constraint, the major proportion of our parameter space will be accessible at next-generation experiments. Since higgsino LSPs are generally more pure than bino-type ones, the former will escape detection as long as there is an order 100 keV splitting between its two neutral components. This is is necessary in order to avoid the limit from spin-independent direct detection measurements [12]. Also visible in the graph are the interesting discontinuities mentioned in [13], corresponding to the opening up of new annihilation channels at M =1/2M through an s-channel higgs. We LSP higgs also notice a similar discontinuity at the top threshold from annihilation to tt; this effect becomes more pronounced as the new yukawa couplings increase. 8 5 Electric Dipole Moment Since our model does not contain any sleptons it induces an electron EDM only at two loops, proportional to sin(θ) for θ as defined above. This is a two-loop effect, we therefore expect it to be close to the experimental bound for (1) θ. The dominant diagram responsible for the EDM is O generated by charginos and neutralinos in a loop and can be seen in Figure 4 below. This diagram is also present in Split SUSY where it gives a comparable contribution to the one with only charginos in the loop [19, 20]. (cid:6) w(cid:6) j + (cid:31)χi W (cid:6) 0 W (cid:6) f’ f Figure 4: The 2-loop contribution to the EDM of a fermion f. The induced EDM is (see [19]): dW α2m 3 m µ f = f χi Im (OLOR∗) r0,r± (2) e ±8π2s4 M2 M2 i i G i W W i=1 W X (cid:0) (cid:1) where ∞ 1 dγ 1 yz(y+z/2) r0,r± = dz dy G i γ (z+y)3(z+K ) Z0 Z0 Z0 i (cid:0) (cid:1) 1 dγ 1 (y 3K )y+2(K +y)y K (K 2y) K i i i i i = dyy − + − ln γ 4y(K y)2 2(K y)3 y Z0 Z0 (cid:20) i− i− (cid:21) and r0 r± µ2 m2 K = i + , r± , r0 χi, i 1 γ γ ≡ M2 i ≡ M2 − W W OR = √2N∗ exp−iθ, OL = N i 2i i − 3i NTM N = diag(m ,m ,m ) with real and positive diagonal elements. The sign on the right- N χ1 χ2 χ3 handsideofequation (2)correspondstothefermionf withweak isospin 1 andf′ isitselectroweak ±2 partner. In principle it should be possible to cross-correlate the region of our parameter space which is consistent with relic abundance measurements, with that consistent with electron EDM measure- ments in order to further constrain our parameters. However since the current release of DarkSUSY does not support CP violating phases and a version including CP violations seems almost ready for public release4 we leave an accurate study of the consequences of non-zero CP phase in relic abundance and direct detection calculations for a future work. We can still draw some interesting 4Private communication with one of the authors of DarkSUSY. 9 conclusions by estimating the effect of non-zero CP phase. Because there is no reason for these new contributions to be suppressed with respect to the CP-conserving ones (for θ of (1)), we might O naively expect their inclusion to enhance the annihilation cross-section by around a factor of 2, increasing the acceptable LSP masses by √2 for constant relic abundance. This is discussed in ∼ greater detail in [21] (and [22] for direct detection) in which we see that this observation holds for most of the parameter space. We must note, however, that in particular small regions of the space theenhancementtotheannihilation cross-section andthesuppressiontotheelastic crosssection can be much larger, justifying further investigation of this point in future work. With this assumption in mind we see in Figure 5 that although the majority of our allowed region is below the current experimental limit of d < 1.7 10−27e cm at 95% C.L. [23], most of it will be accessible to next e × generation EDM experiments. These propose to improve the precision of the electron EDM mea- surementby 4 orders of magnitudein the next5 years, andmaybe even upto 8orders of magnitude, funding permitting [24, 25, 26]. We also see in this figure that CP violation is enhanced on the diagonal where the mixing is largest. This is as expected since the yukawas that govern the mixing are necessary for there to be any CP violating phase at all. For the same reason, decoupling either particle sends the EDM to zero. (cid:0)(cid:1)θs(cid:0)(cid:1)=gn0(cid:0)(cid:1)(,mλ(cid:0)(cid:1)u=(cid:0)(cid:1))=0+(cid:0)(cid:1).818(cid:0)(cid:1),,mλ(cid:0)(cid:1)h==(cid:0)(cid:1)105.(cid:0)(cid:1)898.(cid:0)(cid:1)5,(cid:0)(cid:1)lu=(cid:0)(cid:1)0(cid:0)(cid:1).88(cid:0)(cid:1),ld(cid:0)(cid:1)=(cid:0)(cid:1)0.8(cid:0)(cid:1)8(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)u(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)d(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) 3000 (cid:0)(cid:0)(cid:1)(cid:1)1(cid:0)(cid:0)(cid:1)(cid:1)×1(cid:0)(cid:0)(cid:1)(cid:1)0−2(cid:0)(cid:0)(cid:1)(cid:1)7 (cid:0)(cid:0)(cid:1)(cid:1) (cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)θs(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)=gnπ(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(,m(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)λuu(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)=)=0-(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1).,8 m8(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1),hλ(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)=d=1(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)509(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1).8.58(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1), l(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)u=(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)0.(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)88(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1),ld(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)=0(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1).8(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)8 (cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)1.7(cid:0)(cid:1)(cid:0)(cid:1)10−(cid:0)(cid:1)27(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)×(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) 2000 (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) ) V (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) Ge (cid:0)(cid:0)(cid:1)(cid:1)2.2(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1)10−(cid:0)(cid:0)(cid:1)(cid:1)27(cid:0)(cid:0)(cid:1)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)×(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) ( (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) 1 M 1000 (cid:0)(cid:0)(cid:1)(cid:1)3 (cid:0)(cid:0)(cid:1)(cid:1)10(cid:0)(cid:0)(cid:1)(cid:1)−27(cid:0)(cid:0)(cid:1)(cid:1)(cid:0)(cid:0)(cid:1)(cid:1) (cid:0)(cid:1)×(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)1 (cid:0)(cid:1)10−(cid:0)(cid:1)28(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)×(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) 0 0 500 1000 1500 2000 2500 3000 µ (GeV) Figure 5: Electron edm contours for θ =π/2. The excluded regionis bounded by the black contours. Note thatCPviolationwasnotincludedintherelicdensitycalculation,andthedarkmatterplotissimplyintended to indicate the approximate region of interest for dark matter. 6 Gauge Coupling Unification In this section we study the running of gauge couplings in our model at two loops. The addition of higgsinos largely improves unification as compared to the SM case, but their effect is still not large 10

See more

The list of books you might like