Logout succeed
Logout succeed. See you again!

Understanding the Role of Places and Activities on Mobile Phone Interaction and Usage Patterns PDF
Preview Understanding the Role of Places and Activities on Mobile Phone Interaction and Usage Patterns
1 Understanding the Role of Places and Activities on Mobile Phone Interaction and Usage Paerns ABHINAVMEHROTRA,UniversityCollegeLondon,UK SANDRINER.MU¨LLER,UniversityofCambridge,UK GABRIELLAM.HARARI,StanfordUniversity,USA SAMUELD.GOSLING,UniversityofTexasatAustin,USAandUniversityofMelbourne,Australia CECILIAMASCOLO,UniversityofCambridgeandeAlanTuringInstitute,UK MIRCOMUSOLESI,UniversityCollegeLondonandeAlanTuringInstitute,UK P.JASONRENTFROW,UniversityofCambridge,UK Userinteractionpaernswithmobileappsandnoticationsaregenerallycomplexduetothemanyfactorsinvolved.However adeepunderstandingofwhatinuencesthemcanleadtomoreacceptableapplicationsthatareabletodeliverinformationat therighttime.Inthispaper,wepresentforthersttimeanin-depthanalysisofinteractionbehaviorwithnoticationsin relationtothelocationandactivityofusers.Weconductedanin-situstudyforaperiodoftwoweekstocollectmorethan 36,000notications,17,000instancesofapplicationusage,77,000locationsamples,and487daysofdailyactivityentriesfrom 26studentsataUKuniversity. Ourresultsshowthatusers’aentiontowardsnewnoticationsandwillingnesstoacceptthemarestronglylinkedtothe locationtheyareinandinminorparttotheircurrentactivity.Weconsiderbothusers’receptivityandaentiveness,andwe showthatdierentresponsebehaviorsareassociatedtodierentlocations.esendingsarefundamentalfromadesign perspectivesincetheyallowustounderstandhowcertaintypesofplacesarelinkedtospecictypesofinteractionbehavior. isinformationcanbeusedasabasisforthedevelopmentofnovelintelligentmobileapplicationsandservices. CCSConcepts:•Human-centeredcomputing HCIdesignandevaluationmethods;Empiricalstudiesinubiquitousand ! mobilecomputing; AdditionalKeyWordsandPhrases:MobileSensing,Notications,ApplicationUsage,Context-awareComputing. ACMReferenceformat: AbhinavMehrotra,SandrineR.Mu¨ller,GabriellaM.Harari,SamuelD.Gosling,CeciliaMascolo,MircoMusolesi,andP.Jason Rentfrow.2017.UnderstandingtheRoleofPlacesandActivitiesonMobilePhoneInteractionandUsagePaerns.PACM Interact.Mob.WearableUbiquitousTechnol.1,1,Article1(July2017),22pages. DOI:10.1145/nnnnnnn.nnnnnnn 1 INTRODUCTION Mobilephonestodayhavebecomeanindispensablepartofourdailylives.Farfrombeingsimplecallinginstru- ments,theyarenowadvancedcomputingplatformswithalways-onconnectivity,high-speeddataprocessingand advancedsensing[21].eseaordanceshaveopenedthepossibilityofimplementingnovelcontext-awareand personalizedapplicationsthatareabletoassistusinavarietyofday-to-daysituations.Atthesametime,they Permissiontomakedigitalorhardcopiesofallorpartofthisworkforpersonalorclassroomuseisgrantedwithoutfeeprovidedthat copiesarenotmadeordistributedforprotorcommercialadvantageandthatcopiesbearthisnoticeandthefullcitationontherst page.CopyrightsforcomponentsofthisworkownedbyothersthanACMmustbehonored.Abstractingwithcreditispermied.Tocopy otherwise,orrepublish,topostonserversortoredistributetolists,requirespriorspecicpermissionand/orafee.Requestpermissionsfrom [email protected]. ©2017ACM. 2474-9567/2017/7-ART1$15.00 DOI:10.1145/nnnnnnn.nnnnnnn PACMonInteractive,Mobile,WearableandUbiquitousTechnologies,Vol.1,No.1,Article1.Publicationdate:July2017. 1:2 • Mehrotraetal. (a) (b) (c) (d) Fig.1. TheMyLifeLoggerapplication. representauniqueplatformforreal-timedeliveryofinformationaboutavarietyofeventsrangingfromemails toupdatesononlinesocialnetworks,fromadvertisementstopositivebehaviorchangeinterventions[5,20,31]. eadventofmobilesensinghasprovidedagreatopportunityforresearchersandpractitionerstoinvestigate users’mobileinteractionbehavior.Mobileappsarenowcapableofrecordinginformationaboutusers’interactions withmobilephonesandthesurroundingcontext(e.g.,location,activity,audioenvironment,andcollocationwith otherdevices).ankstotheavailabilityofthisinformation,researchershavebeenabletoconductseveralstudies onavarietyofaspectsofhuman-smartphoneinteraction.Forexample,studieshaveinvestigatedthediversityin appusagebehaviorofindividuals[14],thecharacterizationofmobileusageinruralandurbansocieties[13] orindierentsocio-economicgroups[32]. Othershavefocussedontheinuenceofpersonality[10,11],the associationbetweensocialcontextandappusagepaerns[26],andusers’motivationsforusingdierenttypes ofapps[18].Moreover,somestudieshavealsofocusedonunderstandingusers’appusagepaernsforpredicting theirfutureinteractionwithapps[27,38]. Anotherparticularaspectthathasaractedtheaentionofresearchersgivenitspracticalimportanceisthe characterizationofthereactionofuserstonoticationsandthedesignofmobilenoticationmanagementsystems. Forexample,somestudieshaveinvestigatedthefactorsthatinuenceusers’aentivenessandreceptivityto notications[24,30]andhowtheseareinuencedbycontext[28],content[23],andthecomplexityofanongoing task[24].Otherprojectshaveaimedatanticipatingusers’aentiveness[30]andreceptivity[22]tonotications bylearningtheirbehavioralpaerns. However,existingworkhasnotconsideredtheimpactoftheexternalfactors,suchasthetypeoflocations usersareinandtheactivitiestheyarecurrentlycarryingout,ontheirinteractionwithnoticationsandapp usage behavior. A deep understanding of these factors would enable us to improve users’ experience and the eectiveness of notications as well as applications (e.g., marketing and positive behavior intervention applications). Keychallengesforsuchastudyincludedatacollectionataverynegranularity,whichmight requirefrequentinputsfromusers,andtheextractionofhigh-levelinformationfromrawsensordatawiththe goalofassigningsemanticstoit. PACMonInteractive,Mobile,WearableandUbiquitousTechnologies,Vol.1,No.1,Article1.Publicationdate:July2017. UnderstandingtheRoleofPlacesandActivitiesonMobilePhoneInteractionandUsagePaerns • 1:3 Tobridgethisgap,inthispaperwepresenttherstin-situstudyoftheimpactoflocationandactivitieson users’interactionwithmobilenoticationsandapplications. Overaperiodoftwoweeks,wecollectedmore than36,000notications,17,000instancesofapplicationusage,77,000locationsamples,and487daysofdaily activityentries(i.e.,2984activityinstances)from26studentsataUKuniversity.Usingthisdata,weinvestigate users’interactionwithmobilenoticationsandappswhentheyareperformingdierentactivities,whenthey visitdierenttypesoflocations,andlocationswithdierentcharacteristicssuchasbeingboringvs.exciting,sad vs.happy,inactivevs.busy,lazyvs.productive,distressingvs.relaxing,andnaturalvs.urban. ekeycontributionsandndingsofthisworkcanbesummarizedasfollows: Wediscussanin-depthstudyoftherelationshipsbetweenusers’activitiesandinteractionwithnotica- • tionsandapps. Wediscussaquantitativeevaluationofusers’interactionwithnoticationsandappswhentheyareat • dierenttypesoflocations;thisisimportantfromadesignperspective,sinceitallowsustounderstand howcertaintypesofplacesarelinkedtospecictypesofinteractionbehaviorasabasisofthedevelopment ofintelligentapplications. Wepresentanextensiveinvestigationoftheimpactoflocationcharacteristicsonusers’aentiveness • andreceptivitytonoticationsandappusagepaern.Weconsiderdierentcharacterizationofplaces (e.g.,urban,productiveandsoon)inrelationtousers’interactionwithnotications.Again,besidesthe inherentintellectualinterest,thendingsmightbeusedinthedesignofpersonalizedapplicationsbased onlyontheknowledgeofthecurrentlocation. roughouranalysisweuncovervariousnewinsightsaboutthephoneusageandnoticationinteraction behaviorsofusersandalso,quiteimportantly,conrmsomendingsofpreviousstudies.Morespecically,the mainnovelndingsofouranalysisare: Participantsweremorereceptivetonoticationswhiletheywereexercisinganddoingroutinetasks. • Overallcommunicationappswereusedthemost,exceptwhileparticipantsweregoingtosleep,whichis • whentheymostlyusedlifestyleapps. Participantsweremorereceptivetonoticationswhentheywereatcollege,inlibraries,onstreets,and • theywereleastaentivewhilebeingatreligiousinstitutions. eappusagewashighestwhileparticipantswereatcollegeorinlibraries. • Participantsusedmostlymusicandreadingappswhilewaitingatbusstopsandtrainstations. • Participantsweremoreaentivetonoticationsatproductiveplacescomparedtolazyplaces. • Participantswerelessreceptivetonoticationsatnaturalplacescomparedtourbanplaces. • Whileatlazy,distressingandnaturalplacesparticipantsusedtheirphoneslesscomparedtoproductive, • relaxingandurbanplacesrespectively. isstudyhasledtomanyinterestinginsightsthatarediscussedindetailinthefollowingsections.Firstof all,peoplepaylessaentiontonoticationswhentheyarepreparingtogotobed(ortheyareinbedbefore sleeping)andwhileexercising.Peopleacceptmostnoticationsthataredeliveredwhiletheyaredoingexercise androutinetasks.Whenpeopleareonstreets,orincollege,universityandresidentialareas,theynotonlypay moreaentiontowardsnoticationsbutalsoacceptmostofthem.Also,peoplearemoreaentivetonotications atplacesthatarecharacterizedas“productive”.eyacceptmorenoticationsatproductiveandurbanplaces. Furthermore,overallphoneusagedurationaswellasusageofspecicappsvarywhenpeoplevisitspecictypes ofplacesandwhileperformingspecicactivities. Overallappusageishighestwhilepeoplearerelaxing,at collegeorinlibraries,whereasitislowestwhilepeoplearedoingexercise,routinetasksorgoingtosleep,and whentheyareatgyms,religiousinstitutionsorinparkingplaces. Webelievethatthepotentialapplicationsofthisworkaremany. Firstofallthendingsofthispapercan be used as a basis for the development of predictive applications that rely on the analysis of users’ current PACMonInteractive,Mobile,WearableandUbiquitousTechnologies,Vol.1,No.1,Article1.Publicationdate:July2017. 1:4 • Mehrotraetal. locationsandnotonlyontheirpastbehavioralpaerns.Morespecically,thisisparticularlyimportantinthe bootstrappingphaseofintelligentapplicationsthatarebasedonlearningalgorithmsthatrequirealargehistory ofpastinteractionswiththephonesinordertomakeaccuratepredictionaboutusers’behavior.Examplesinclude noticationmanagementsystems,andpre-cachingandpre-launchingmechanismsformobileapplications. 2 RELATEDWORK Inthissectionwereviewtherelatedworkintwokeyareas,namelythestudiesaboutthecharacterizationof users’interactionwithnoticationsandthoseaboutusers’appusagebehavior. 2.1 UnderstandingUsers’InteractionwithNotifications Inrecentyearstheareaofmobileinterruptibilityhasreceivedincreasingaention.Previousstudieshaveexplored variousaspectsofusers’interactionwithmobilenotications[4,6,7,12,24,29,35].Inparticular,in[35]Sahami etal.showthatusersdealwitharound60noticationsperday,andmostoftheseareviewedwithinafewminutes ofarrival.Additionally,bycollectingthesubjectivefeedbackfrommobileusers,theauthorsdemonstratethat usersassigndierentimportancetonoticationstriggeredbyapplicationfromdierentcategories.Atthesame time,Pielotetal.[29]showthatpersonalcommunicationnoticationsarerespondedtoquickestbecauseofsocial pressureandtheexchangeoftimecriticalinformationthroughcommunicationapplications(i.e.,Whatsapp). Ontheotherhand, asIqbaletal. suggestin[19], usersarewillingtotoleratesomedisruptioninreturnfor receivingnoticationsthatcontainvaluableinformation.Similarly,in[24]Mehrotraetal.showthatnotications containingimportantorusefulcontentareoenaccepteddespitethedisruptioncausedbythem. Moreover,otherstudieshavealsoinvestigatedhowusers’aentivenessandreceptivitytonoticationsare inuencedbytheircontext[28,30]andcontent[16,22,23]. In[28],theauthorsshowthattheaentiveness ofuserscanbedeterminedbycontextualfactorsincludingactivity,locationandtimeofday. eyproposea mechanismthatreliesonthesecontextmodalitiestopredictopportunemomentsfordeliveringnotications. In[30]Pielotetal.proposeamodelthatcanpredictwhetherauserwillviewanoticationwithinafewminutes withaprecisionofapproximately81%. Ontheotherhand,in[16]theauthorsshowthatusers’receptivityis inuencedbytheirgeneralinterestinthenoticationcontent,entertainmentvalueperceivedinitandaction required by it, but not the time of delivery. In [23] Mehrotra et al. suggest to use contextual information, sender-recipientrelationshipandapplicationcategorythattriggeredthenoticationfordeterminingtheuser’s interruptibility.Inanotherstudy[22],theauthorsdemonstratethatusers’receptivitytonoticationsisinuenced bytheirlocationandthecontentofnoticationsdelivered.eauthorsproposeasystemthatreliesonmachine learningalgorithmsfortheautomaticextractionofrulesthatreectuser’spreferencesforreceivingnotications indierentsituations. 2.2 UnderstandingUsers’AppUsageBehavior Previous studies have investigated the association between users’ app usage behavior and various socio- economic[13,14,32]andpsychological[10,11,26]factors.Othershavefocussedonusers’motivationsforusing dierenttypesofapps[8,18]. Morespecically, in[32], Rahmatietal. presentastudythatinvestigateshowuserswithacertainsocio- economicstatusinstallanduseapps.eirndingsconrmtheinuenceofsocio-economicstatusonphone usage. In[11], theauthorsshowthatthereisasignicantassociationbetweenusers’personalitytraitsand phoneusage.Furthermore,quiteinterestingly,in[18]Hinikeretal.provideevidencethatusers’motivationsfor engagingwithtechnologycanbedividedintoinstrumentalandritualistic. In[8],Bohmeretal. presentalarge-scalestudywiththegoalofunderstandingusers’appusagepaerns basedontheircontext.endingsofthisstudydemonstratethatusersspendaroundanhoureverydayusing theirphones,buttheiraveragesessionusinganapplicationlastsforaminute.Overall,communicationappsget PACMonInteractive,Mobile,WearableandUbiquitousTechnologies,Vol.1,No.1,Article1.Publicationdate:July2017. UnderstandingtheRoleofPlacesandActivitiesonMobilePhoneInteractionandUsagePaerns • 1:5 Group Feature Description Arrivaltime Timeatwhichanoticationarrivesinthenoticationbar. Removaltime Timeatwhichanoticationisremovedfromthenoticationbar. Notication Senderapplication Nameandpackageoftheapplicationthattriggersthenotication. AppName Nameoftheapplication. ApplicationUsage LaunchTime Timeatwhichtheapplicationislaunchedandappearedintheforeground. BackgroundTime Timeatwhichtheapplicationuseisendedanditismovedfromforeground tobackground. Lock/unlockevent Timeatwhichthephonewaslockedandunlocked. PhoneInteraction Screeninteraction Typeofinteraction(i.e.,singleclick,longclickandscroll),timeandthename offoregroundapplications(includinghomescreen)withwhichtheinteraction happened. Location Geo-locationoftheplacesvisited. Context DailyActivity Typeandtimedurationofdierentactivitiesperformedinaday.eseactiv- itiesincludesleep,eat,work,physicalexercise,socialactivityandrelaxation. Table1. Descriptionoffeaturesfromthedataset. usedmost,exceptwhenusersaretraveling,inwhichcasetheyaremorelikelytousemultimediaapps.In[15], Ferreiraet.al.conductedastudyshowingthatappusagebehaviorofusersisstronglyinuencedbytheirsocial andspatialcontext. Also,Xuetal.[37]exploitthenetworktracfromapps(basedonHTTPsignatures)to demonstratethatappusageisinuencedbyspatialandtemporalfactorsincludinggeographicalareasandtime oftheday.eirndingsalsoshowthatcertainappshaveanonnegligiblelikelihoodofco-occurrence. An open question in this area remains the impact of locations and activities on users’ interaction with notications. epresentstudyaimstobridgethisgapbyinvestigatingtheeectsofthesefactorsonusers’ aentivenessandreceptivitytonoticationsaswellasontheirappusagebehavior. 3 METHODOLOGY Inthissectionwepresentourapproachforinvestigatingtheinuenceofdailyactivities,typeandcharacteristics ofvisitedlocationsonusers’appusage,andnoticationinteractionbehavior. 3.1 LifeLoggerApp Giventheaimsoftheproposedinvestigation,wedesignedandcarriedoutanin-the-wild study[34]tocollect users’data.Morespecically,wedevelopedanAndroidappcalledMyLifeLogger (showninFigure1).eapp performs continuous sensing in the background to log users’ interaction with notications, app usage, and context.Table1providesadescriptionofthefeaturescapturedbyMyLifeLogger. eappreliesonAndroid’sNoticationListenerService[1]andUsageStatsManager[2]totracenotications andapplicationusage. Moreover, theappallowsuserstoprovidetheirdailyactivityschedules, forwhicha remindernoticationistriggeredeverynightat9pm(localtime).AsshowninFigure1(b),usersweregivenalist ofsixpossibledailyactivities: Eat:timeperiodwhenauserishavingfood. • Sleep:timeperiodforwhichauserslept.1 • Work:timeperiodwhenauserisengagedinanactivityinvolvingmentalorphysicaleort.Sinceour • participantsarestudents,thisactivitywouldmostlyconsistoforberelatedtostudying. 1Itisworthnotingthatparticipantsdidnotreceiveanystandarddenitionoftheseactivitiesbeforethestudy.erefore,forexample,some participantsmighthaveinterpretedsleepingasbeinginbed. PACMonInteractive,Mobile,WearableandUbiquitousTechnologies,Vol.1,No.1,Article1.Publicationdate:July2017. 1:6 • Mehrotraetal. Exercise:timeperiodwhenauserisperforminghealthandtnessactivities. • Social:timeperiodwhenauserissocializingwithothers. • Relaxation:timeperiodduringwhichauserisbeingfreefromtensionandanxiety. • Itisworthnotingthatparticipantswereabletoselectonlyoneactivityforaspecictimeinterval.Moreover, theywereallowedtoenterotheractivitiesbyselectingtheother option,throughwhichtheycouldinputan activitynameasfreetext. Mostactivitiesregisteredthroughtheother activityoptionwererelatedtoroutine taskssuchaslaundry,cooking,geingready,packing,supermarketandsoon.erefore,wecreatedanother categoryforchoresandmappedtheroutinetasksenteredthroughtheother activityoptiontothisnewactivity. eMyLifeLoggerappalsocollectedadditionaldataaboutothercontextualfeatures(suchasmovement,call andSMSlogs)aswellasmood-relatedquestionnaires. However,wedonotdiscussthoseaspectsofthedata becausetheyarenotusedfortheanalysispresentedinthispaper. 3.2 RecruitmentoftheParticipants MyLifeLoggerwaspublishedonGooglePlayStore2andadvertisedtorst-yearundergraduatestudentsataUK University.Itwasinstalledby28studentsand26studentscompletedthestudybykeepingtheapprunningon theirphoneforaminimumoftwoweeks.eseparticipantscomefrombothsexes(16malesand10females), withtheagespanbetween18and27years(mean =19.46andstandardde�iation =2.18). estudentswere enrolledin15dierentcoursesand27%(n=7)werenon-British.Allparticipantswhocompletedthestudywere given£25. 3.3 EnsuringPrivacyCompliance InordertoallowtheMyLifeLoggerapplicationtomonitornoticationsandappusage,theuserhastogiveexplicit permissionasrequiredbytheAndroidoperatingsystem.Moreover,theapplicationalsoshowsaconsentform detailingtheinformationthatiscollected.isensuresthattheusergoesthroughatwo-leveluseragreement andiscompletelyawareofthetypeofinformationcapturedbytheapplication. Itisworthnotingthatwereceivedethicalapprovalforthestudy,includingallproceduresandmaterials,from thePsychologyResearchEthicsCommieeattheUniversityofCambridge. 3.4 Dataset Weanalyzedthedataof26userswhoparticipatedforaminimumperiodoftwoweeks.edatasetcorresponding totheseusersincludes36,106notications,17,680instancesofapplicationusage,77,306locationsamples,and 487daysofdailyactivityentries(i.e.,2,984activities). 3.4.1 CharacterizingLocations. Inordertoperformouranalysisontheimpactoflocationonnotication responseandapplicationusage,wecannotjustrelyonsensor(i.e.,GPS)dataasitonlyprovidesthecoordinates ofaplaceratherthanitstypeandcharacteristics.erefore,wemanuallycategorizedthelocationsbyclustering themintosignicantplaces,andthencharacterizedthesignicantplacesbyhavingcodersrateeachplaceon severaldimensions(e.g.,thedegreetowhichaplaceisinactivevsbusy). IdentifyingSignicantPlaces.Firstofall,wediscardthelocationsampleswithmorethan50metersaccuracy sothattheestimatedlocationclustersareofbeerquality.Wethenndthelocationsamplesthatwerecollected whileusersweremovingandwealsodiscardthem.Inordertoinfersuchlocationpoints,wecomputethespeed oftheuserbyusingthedistanceandthetimebetweenthelastandthecurrentlocationpoints.Ifthespeedis 2hps://play.google.com/store/apps/details?id=com.nsds.mystudentlife PACMonInteractive,Mobile,WearableandUbiquitousTechnologies,Vol.1,No.1,Article1.Publicationdate:July2017. UnderstandingtheRoleofPlacesandActivitiesonMobilePhoneInteractionandUsagePaerns • 1:7 lessthanacertainthreshold(i.e.,5kmperhour)weconsiderthatlocationreadingwascollectedwhentheuser wasnotmoving. Now,weusethelocationclusteringapproachpresentedin[36]forgroupingthelteredlocationsamples.We iterateoveralllocationsamplesandforeachlocationpointwecreateanewclusteronlyifthedistanceofthis locationfromthecentroidofeachexistingclusterismorethan200meters.Otherwise,weaddthislocationto thecorrespondingclusterandupdateitscentroid.Finally,weconsiderallcentroidsassignicantplaces. IdentifyingPlaceTypeandCharacteristics.Placescanbedescribedintermsofobjectiveinformation,such aswhetheralocationisindoororoutdoor,orinaresidentialorindustrialarea,andalsointermsofinformation thatrelatestousers’aectiveappraisalsofthem.Despitepeople’sexperiencesofcoursebeingsubjective,they on average agree on a variety of characteristics such as liveliness, pleasantness, and naturalness, to name a few[17,25].Atthesametime,werecruitedcodersbelongingtothesamedemographicsoftheparticipants(e.g., studentstatus,averageage,evengenderdistribution)toreducethesubjectivenessinplaceratings.Moreover,we computedthesimilarityintheratingstoensurethattheyarereliable. Onaverage,53signicantplaces(perperson)wereidentiedinthetwo-weekstudyperiod.Foreachparticipant weselectedthetoptenplacesinwhichtheyhadspentmosttime.Werecruitedfourindependentcoderswho wereundergraduatestudentsthemselvesbutnotparticipantsinthestudy.First,theyweretrainedinpersonand providedwithadetailedhandbookonthelocationcodingprocess.Aertheirtraining,theywereprovidedwith alistofcoordinates(i.e.,longitudeandlatitude)oftherespectiveplaces,andtheywereaskedtocategorizeand evaluatetheseplacesforthegivencharacteristicsbylookingatthemusingGooglemaps. Inordertocategorizetheplacetype,werelyonGoogle’sPlaceTypes[3]asthepossiblecategories.Moreover, coderswereprovidedwithanoptiontoenteranadditionalplacetypeincaseitwasnotpresentinthegivenlist. Incaseswhereaplacetypewasunclear,codersusedan“unclear”categorytodenoteanambiguousplace.Finally, eachplacetypethatwasclassiedbyfourcoderswasmergedbyoneoftheauthors.Itisworthnotingthatwe lteredoutthecategoriesthatappearedrarelyornotatall.Inordertoperformthisltering,weensuredthat placesofeachcategorywerevisitedatleastoncebyaminimumof50%oftheparticipants. Inordertoidentifythecharacteristicsofsignicantplaces,thesewerealsocodedfor24descriptivecharacter- isticsthatcapturedtheambienceoftheplace,andthetypesofpeoplethatwouldvisittheplace.Inthiswork,we focusedonthefourcharacteristicratingsthatdescribetheambianceoftheplace.Specically,wefocusedonthe degreetowhichtheplacewas:inactive-busy,lazy-productive,distressing-relaxing,andnatural-urban.esefour characteristicswereratedona7-pointLikertscale. eseratingsfromthefourcoderswerethenmergedby computingtheirmean. Finally,themergedratingswerecenteredandrescaledfroma1to7scaletoa-3to3 scale.Wethentransformthesefroma7-pointscaletoa3pointsscale(-1to1)byusingtheseranges:-3to-0.5as -1,-0.5to0.5as0,and0.5to3as1.isturnedthecontinuousvariableintoacategoricaloneandmakesitlikely thatwehaveenoughdataforalllevels.Levels 1,0,1representthenegative,neutral,andpositivevalueofthe � locationcharacteristicrespectively.Forinstance,theseratingsforinactive-busycharacteristicswouldconvertto inactive,neutralandbusy. 3.4.2 AppCategories. Inordertoinvestigateusers’behaviorforinteractingwithspecicapps,wecategorized all apps using the categories dened on the Google Play store. Overall, the apps belong to 11 categories, namelyreading,tness,business,photography,communication,game,lifestyle,music,social,tools,andtravel applications. However,appsofcertaincategoriesarenotusedbyallparticipants. erefore,weconsiderthe typeofappsthatwereusedbyallparticipants. Consequently,wecameupwiththefollowingsixcategories: communication,lifestyle,music,reading,social,andtravelapplications. PACMonInteractive,Mobile,WearableandUbiquitousTechnologies,Vol.1,No.1,Article1.Publicationdate:July2017. 1:8 • Mehrotraetal. 3.5 antitativeMeasuresforNotificationandPhoneUsage In this section we discuss the metrics used in this study for quantifying users’ behavior in terms of their interactionswithnoticationsandapps. Weusetwometricsforquantifyinginteractionwithnotications– NoticationReceptivityandNoticationSeenTime,andonemetricforinteractionwithapp–AppUsageTime. eseareclassicindicatorswidelyadoptedforthistypeofstudiesbytheubiquitouscomputingcommunity(see forexample[16,30]).edenitionsofthesemetricsarereportedbelow. NoticationReceptivity:theuser’swillingnesstoreceiveanotication.ismetricrepresentshow • willingauseristoreceiveinterruptions. Highreceptivity(i.e.,moreclicks)indicatesincreaseinthe willingnessoftheusertobeinterruptedandviceversa.Inordertoinfertheresponsetoanotication,we checkwhetherthecorrespondingapp(whichtriggeredthenotication)waslaunchedaertheremoval timeofthatnotication.Weareawarethatourapproachhaslimitations,becausesomenoticationsthat donotrequirefurtheractionmightnotbeclickedratherjustseenanddismissedbytheuser. NoticationSeenTime(NoticationAttentiveness):thetimefromthenoticationarrivaluntilthe • time the notication was seen by the user. is metric reects the user’s aentiveness towards new notications.Inordertodetectthemomentatwhichanoticationisseen,weusetheunlockeventof thephoneandassumethatallnewlyavailablenoticationsinthenoticationbarareseenwhentheuser unlocksthephone.Incaseanoticationarriveswhentheuserisalreadyusingthephone(i.e.,thephone isunlocked),theseentimeofthisnoticationwouldbeconsideredequaltozero.Todetectthelockand unlockeventsweusethePhoneInteractiondata(discussedinTable1).Itisworthnotingthatweremoved allnoticationinstancesthatwerenotrespondedtowithin2hours.Asarecentstudy[29]demonstrated thatpeoplereceivenoticationseveryhour(frommorningtolatenight),whicharehandledwithinafew minutes.erefore,weuse2-hourthresholdforthemaximumseentimetolteroutnoticationsthat arrivedwhentheuserwasawayfromthephoneorsleeping. AppUsageTime:durationforwhichanapplicationwasinforeground.Morespecically,itisthetime • intervalbetweenthelaunchofanapplicationandtheinstantoftimewhenitwassenttothebackground. We compute these metrics for each user when they are performing specic activities and when they are atcertaintypesofplaces. Wethenaggregatethesemetricstocomputetheiraveragevalues. Finally,weuse statisticalteststocomparethedierenceinusers’interactionwhenperformingdierentactivitiesatdierent typesofplaces. ItisworthnotingthatwhilecomputingAppUsageTimefordierentactivities,wenormalizetheappusage valuebydividingitbythetimespentbytheuserengaginginthecorrespondingactivity.Similarly,tocompute theAppUsageTimefordierenttypesofplaces,wenormalizetheappusagevaluebydividingitbythetime spentbytheuseratthecorrespondingplace.isstepisnecessaryinordertoavoidbiasesduetotherelative timesspentinagivenlocationorwhileengaginginacertainactivity.erefore,theuseofanon-normalized AppUsageTimemetriccouldproducebiasedresults. 3.6 Procedure Wewanttoinvestigatetheinuenceofvariables,includingdailyactivities,typeandcharacteristicsofvisited locations,onthenoticationandphoneusagebehaviorofusers,soweconsiderthemastheindependentvariables. Ontheotherhand,ourdependentvariablesshouldrepresentthenoticationandphoneusagebehaviorofusers. erefore,weusethethreenoticationandphoneusagemetrics(NoticationReceptivity,NoticationSeenTime, andAppUsageTime)asdependentvariables. eanalyseswereperformedforeachpairofindependentand dependentvariables.Weperformaone-wayANOVAforquantifyingthedierencesinthedependentvariables (i.e.,NoticationReceptivityandNoticationSeenTime)thatrepresentsnoticationinteractionbehavior.However, forquantifyingthevariabilityinthedependentvariable(i.e.,AppUsageTime)thatrepresentappusagebehavior, PACMonInteractive,Mobile,WearableandUbiquitousTechnologies,Vol.1,No.1,Article1.Publicationdate:July2017. UnderstandingtheRoleofPlacesandActivitiesonMobilePhoneInteractionandUsagePaerns • 1:9 ANOVA (p<0.05) 90 ANOVA (p<0.05) 40 Seen Time (mins)123000 ● ● Receptivity (%)678000 ● ● ● ● ● ● ● ● ● ● ● 50 ● 0 work sleep chores relaxation social eat exercise work sleep chores relaxation social eat exercise Daily Activity Daily Activity (a) (b) Fig.2. Roleofdailyactivityininfluencingtheuser’s(a)aentivenessand(b)receptivity.Dierentcolorindicatesstatistically significantdierences(p<0.05).Intheseplotsthedotsrepresentthemeansandthebarsrepresentthestandarddeviations. Activity work chores social exercise Activity work chores social exercise sleep relaxation eat sleep relaxation eat 0.08 0.015 0.06 Density0.04 Density0.010 0.02 0.005 0.00 0.000 0 25 50 75 0 25 50 75 100 Seen Time (mins) Receptivity (a) (b) Fig.3. Probabilitydistributionsofusers’average(a)aentivenessand(b)receptivitywhileperformingdierentdailyactivities. Here,probabilitiescanbecomputedasmultiplicationofdensitywithaentivenessandreceptivityvaluesrespectively. weperformatwo-wayANOVA,becauseappcategoryisconsideredasanotherindependentvariableapartfrom activityandlocationbasedindependentvariables.Itisworthnotingthatweremovedthelevelsofindependent variablesthatdidnothaveobservationsfromatleast50%oftheparticipants. 4 UNDERSTANDINGTHEROLEOFDAILYACTIVITY Inthissectionweprovideaquantitativeevaluationoftherelationshipbetweendailyactivityandtheusers’ behaviorintermsofnoticationinteractionandappusage. ekeyndingsofthissectionare: Peopleareleastaentivetonoticationswhiletheyarepreparingtogotobed(orusingthephone • inbed)andduringthetimetheyexercise. Peoplearemorereceptivetonoticationswhiletheyareexercisinganddoingchores(i.e.,routine • tasks). Overallappusageishighestwhilepeoplearerelaxingandlowestwhentheyareengagedinchores, • doingexerciseandgoingtosleep. Usageofspecicappsisassociatedtousers’dailyactivities. • PACMonInteractive,Mobile,WearableandUbiquitousTechnologies,Vol.1,No.1,Article1.Publicationdate:July2017. 1:10 • Mehrotraetal. Application Category ● communication ● lifestyle ● music ● reading ● social ● travel ANOVA App Category (p<0.05) %)3 ● Daily Activity (p<0.05) me ( ● ● Interaction (p<0.05) Ti e 2 ● g a s ● pp U1 ● ● ● ● ● ● ●● ● A0 ● ● ● ●●● ● ● ●●●● ●●● ● ●●●●● ● ● ●●●●● work eat sleep social chores relaxation exercise Daily Activity Fig.4. Relationbetweendailyactivityandapplicationusage.Inthisplotthedotsrepresentthemeansandthebarsrepresent thestandarddeviations.. 4.1 AentivenessandReceptivity Toinvestigatetherelationshipbetweendailyactivityandusers’aentivenessandreceptivitytonotications, weperformtwoseparateone-wayANOVAsthatquantifythedierencesintheuser’s(i)aentivenessand(ii) receptivitytonoticationswhiletheyperformdierentactivities.eresultsoftherstanalysis(i.e.,eects onaentiveness)showthatthereisasignicanteectofdailyactivitiesontheuser’saentiveness,withF = 4.788,p <0.05.Inordertondwhichdailyactivitiesaectusers’aentiveness,weperformaTukeypost-hoc test(byseing� equalto0.05).AsshowninFigure2(a),thetestrevealsthattheseentimeislongest(i.e.,low aentiveness)whennoticationsarrivewhiletheuserissleeping.However,thereisnosignicantdierence inaentivenessofuserswhiletheyareengagedinanyotherdailyactivity,exceptthattheyareslightlyless aentivewhileexercising. eresultsofthesecondanalysisshowthatthereisalsoasignicanteectofdailyactivitiesontheusers’ receptivitytonotications,withF =2.947,p <0.05.AsshowninFigure2(b),aTukeypost-hoctest(byseing� equalto0.05)revealsthatusers’aremostreceptivetonoticationswhentheyareperformingchoresorphysical exercisecomparedtootheractivities. Moreover,inordertoinvestigatethediversityinusers’aentivenessandreceptivity,inFigure3wepresentthe probabilitydistributionofusers’averageaentivenessandreceptivitywhiletheyareperformingdierentdaily activities.eresultsdemonstratethatthereissomevariabilityinbothaentivenessandreceptivitybetween users.Forinstance,someusersareconsiderablylessaentivetonoticationswhileexercisingcomparedtoother users.Users’receptivityvariesacrossallactivities. 4.2 AppUsageTime Inordertoinvestigatetherelationshipbetweendailyactivitiesandtheappusage,weperformatwo-wayANOVA byseingappusagetimeasdependentvariable(DV),anddailyactivityandappcategoryasindependentvariable (IVs). Here,weusetwoIVsaswecanquantifyboththeeectofdailyactivityonoverallappusagetimeand theeectofdailyactivityoftheuseofspecicapps.eresultsdemonstratethatalleectswerestatistically signicantatthe0.05signicancelevel.emaineectfordailyactivityyieldedF =7.45(p <0.05),indicatinga signicantdierenceintheuser’soverallappusagetime(allcategoriesconsideredtogether)whileperforming PACMonInteractive,Mobile,WearableandUbiquitousTechnologies,Vol.1,No.1,Article1.Publicationdate:July2017.